forked from CompSynBioLab-KoreaUniv/FunGAP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_transcripts.py
executable file
·146 lines (117 loc) · 4.05 KB
/
make_transcripts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python2
'''
Make transcripts file from genome FASTA and GFF3
Author Byoungnam Min Aug 1, 2017
'''
# Import modules
import sys
import re
import os
from Bio.Seq import Seq
from argparse import ArgumentParser
from collections import defaultdict
from Bio.Alphabet import generic_dna
# Main function
def main(argv):
argparse_usage = (
'make_transcripts.py -f <input_fasta> -g <input_gff3> '
'-o <output_prefix>'
)
parser = ArgumentParser(usage=argparse_usage)
parser.add_argument(
'-f', '--input_fasta', nargs=1, required=True,
help='Input fasta file'
)
parser.add_argument(
'-g', '--input_gff3', nargs=1, required=True,
help='Input gff3 file'
)
args = parser.parse_args()
input_fasta = os.path.abspath(args.input_fasta[0])
input_gff3 = os.path.abspath(args.input_gff3[0])
# Run functions :)
parse_gff3(input_fasta, input_gff3)
def import_file(input_file):
with open(input_file) as f_in:
txt = (line.rstrip() for line in f_in)
txt = list(line for line in txt if line)
return txt
def get_reverse_complement(nuc_seq):
my_dna = Seq(nuc_seq, generic_dna)
rev_comp_dna = str(my_dna.reverse_complement())
return rev_comp_dna
def parse_gff3(input_fasta, input_gff3):
# Read gff3
gff3 = import_file(input_gff3)
# Parse gff3 and store in dictionary
D_gff3 = defaultdict(list)
reg_parent = re.compile('Parent=([^;]+)')
for line in gff3:
if re.search('^#', line): # Ignore comment
continue
line_split = line.split('\t')
entry_type = line_split[2]
if entry_type != 'CDS': # Only consider 'CDS'
continue
scaffold = line_split[0]
start = int(line_split[3])
end = int(line_split[4])
strand = line_split[6]
phase = int(line_split[7])
gene_id = line_split[8]
gene_id = reg_parent.search(gene_id).group(1)
D_gff3[gene_id].append((scaffold, start, end, strand, phase))
# Read fasta
fasta = import_file(input_fasta)
# Parse fasta and store in dictionary
D_fasta = defaultdict(str)
for line in fasta:
if re.search(r'^>', line):
scaffold_id = line.split(' ')[0].replace('>', '')
continue
D_fasta[scaffold_id] += line
# Extract sequence
gff3_base = os.path.splitext(input_gff3)[0]
output_transcript = '{}_transcript.fna'.format(gff3_base)
output2 = open(output_transcript, 'w')
gene_ids = sorted(
D_gff3.keys(),
key=lambda x: x.replace('.t1', '')
)
for gene_id in gene_ids:
feature = D_gff3[gene_id]
sorted_by_start = sorted(feature, key=lambda tup: tup[1])
# Gene sequcne
gene_scaffold = sorted_by_start[0][0]
gene_start = sorted_by_start[0][1]
gene_end = sorted_by_start[-1][2]
gene_seq = D_fasta[gene_scaffold][gene_start - 1:gene_end]
if strand == '-':
gene_seq = gene_seq[::-1]
nuc_seq = ''
for element in sorted_by_start: # Feature is a list of tuple
scaffold = element[0]
start = element[1]
end = element[2]
strand = element[3]
phase = element[4]
nuc_seq += D_fasta[scaffold][start - 1:end]
# If it is '-' strand, reverse the transcript
if strand == '-':
nuc_seq = get_reverse_complement(nuc_seq)
# If phase is not 0, trim first few bases according to phase
if strand == '+' and sorted_by_start[0][4] != 0:
codon_start = sorted_by_start[0][4]
nuc_seq = nuc_seq[codon_start:] # Trimming
elif strand == '-' and sorted_by_start[-1][4] != 0:
codon_start = sorted_by_start[-1][4]
nuc_seq = nuc_seq[codon_start:]
# Write to file
output2.write('>{}\n'.format(gene_id))
j = 0
while j < len(nuc_seq):
output2.write('{}\n'.format(nuc_seq[j:j + 60]))
j += 60
output2.close()
if __name__ == '__main__':
main(sys.argv[1:])