-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain.py
291 lines (241 loc) · 12.3 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import os, sys
import argparse
import multiprocessing
from pathlib import Path
from torch.utils.data import DataLoader, Dataset, ConcatDataset
from tqdm import tqdm
import pytorch_lightning as pl
from pytorch_lightning.loggers import TensorBoardLogger
try:
from pytorch_lightning.callbacks.lr_logger import LearningRateLogger
except:
from pytorch_lightning.callbacks import LearningRateMonitor as LearningRateLogger
import torch
from torch.optim.lr_scheduler import LambdaLR
from pytorch_lightning.loggers import TensorBoardLogger
from transformers import PretrainedConfig, AutoTokenizer, AutoModelForMaskedLM
import os
dir_path = os.path.dirname(os.path.realpath(__file__))
from cmed.ed_datasets import WikiDataset
from cmed.pretrain_config import FLAGS, flags
from cmed.utils import (
CheckpointEveryNSteps, print_parameters, load_kg_embeddings
)
from cmed.kgs.dataset import infiniteloop, Dbpedia
import numpy as np
from cmed.config import FastKGBertConfig
from cmed.models import EntityDisambiguation
from cmed.optimizer import Lamb
from cmed.batch_fn import KG_DataCollatorForLanguageModeling
flags.DEFINE_string('kg_cache_path', '', help='checkpoint name')
flags.DEFINE_string('kg_pretrained_path', '', help='checkpoint name')
flags.DEFINE_string('kg_filename_path', '', help='checkpoint name')
flags.DEFINE_string('kg_data_path', '', help='checkpoint name')
flags.DEFINE_string('kg_name', '', help='kg name')
flags.DEFINE_string('pretrained_name', 'roberta-base', help='pretrain encoder name')
flags.DEFINE_list('datasets', [''], help='kg name')
flags.DEFINE_enum('kg_inject_mode', 'concat', ['concat', 'prepend'], help='concat or prepend')
flags.DEFINE_integer('kg_hidden_layer', 4, help='kg hidden dimension')
flags.DEFINE_integer('kg_hidden_size', 768, help='kg hidden dimension')
flags.DEFINE_integer('kg_batch_size', 1024, help='training data max sequence length')
flags.DEFINE_integer('data_max_length', 512, help='training data max sequence length')
flags.DEFINE_string('spacy_el_path', './el_1m/nlp', help='path to spacy el')
flags.DEFINE_float('margin_weight', 1.0, help='margin loss')
flags.DEFINE_float('lm_weight', 0.5, help='masked language model loss')
flags.DEFINE_float('diversity_weight', -1e-3, help='diversity distance loss')
flags.DEFINE_float('kg_self_regul_weight', 0.0001, help='KG self regularization loss')
flags.DEFINE_float('L2', 7.469e-12, help='margin loss')
flags.DEFINE_float('kg_weight', 1.0, help='kg align weight')
flags.DEFINE_boolean('consistency_mean_loss', True, 'Add KG consistency type loss')
flags.DEFINE_boolean('with_kg', True, 'Train with knowledge graph loss')
flags.DEFINE_boolean('with_mlm', True, 'Train masked language loss')
flags.DEFINE_boolean('load_pretrain', True, 'Load pretrained kg graph')
flags.DEFINE_float('elm_all_probability', 0.2, help='mask entity word tokens : input_ids -> MASK')
flags.DEFINE_float('elm_probability', 0.4, help='masked entity id tokens : input_kgs -> MASK')
flags.DEFINE_boolean('mine_negative_sampling', False, 'mine negative sample first')
FLAGS(sys.argv)
class EntityLinkingLearner(pl.LightningModule):
def __init__(self, net, total_iterations, looper=None):
super().__init__()
self.net = net
self.total_iterations = total_iterations
self.log_grad_norm_step = 100
self.hidden_states = None
self.looper = looper
def forward(self, data):
return self.net(**data)
def training_step(self, data, batch_idx):
kg_batch = next(self.looper)
inputs = {**data, **kg_batch }
result = self.forward(inputs)
if self.global_step % 5 == 0:
tensorboard = self.logger.experiment
for key, value in result.items():
tensorboard.add_scalar(key, value.item(), self.global_step)
# if self.global_step % self.log_grad_norm_step == 0 and not FLAGS.use_amp:
# if len(result) == 8:
# for hid in result[7]:
# hid.retain_grad()
# self.hidden_states = result['']
return {'loss': result['loss'] }
# def on_after_backward(self):
# # example to inspect gradient information in tensorboard
# if not FLAGS.use_amp and self.global_step % self.log_grad_norm_step == 0:
# if isinstance(self.hidden_states, tuple):
# for idx, hidden_states in enumerate(self.hidden_states):
# avg_grad_norm = torch.norm(
# torch.flatten((hidden_states.grad * hidden_states.shape[0]), start_dim=1),
# p=2, dim=1).mean()
# self.logger.experiment.add_scalar('grad_norm/'+str(idx+1), avg_grad_norm.item(), self.global_step)
def configure_optimizers(self):
def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):
def lr_lambda(current_step):
learning_rate = max(0.0, 1. - (float(current_step) / float(num_training_steps)))
learning_rate *= min(1.0, float(current_step) / float(num_warmup_steps))
return learning_rate
return LambdaLR(optimizer, lr_lambda, last_epoch)
def get_params_without_weight_decay_ln(named_params, weight_decay):
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{
'params': [p for n, p in named_params if not any(nd in n for nd in no_decay)],
'weight_decay': weight_decay,
},
{
'params': [p for n, p in named_params if any(nd in n for nd in no_decay)],
'weight_decay': 0.0,
},
]
return optimizer_grouped_parameters
optimizer = Lamb(get_params_without_weight_decay_ln(self.net.named_parameters(), weight_decay=0.1),
lr=FLAGS.lr, min_trust=0.25, betas=(0.9, 0.999), eps=1e-08)
self.lr_scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=FLAGS.warmup_step,
num_training_steps=self.total_iterations)
return [optimizer], [{ 'scheduler': self.lr_scheduler, 'name': 'linear_warmup','interval': 'step', }]
if __name__ == '__main__':
from transformers import BertForMaskedLM
from transformers import PretrainedConfig, AutoTokenizer
os.makedirs(FLAGS.name, exist_ok=True)
with open(os.path.join('./', FLAGS.name, 'flagfile.txt'), 'w') as f:
f.write(FLAGS.flags_into_string().replace('\n', ' \n'))
text_tokenizer = AutoTokenizer.from_pretrained(FLAGS.pretrained_name)
print('tokenizer graph loaded!')
kg_model, entity_vocab_size, relation_vocab_size, type_vocab_size, _ = load_kg_embeddings(FLAGS.kg_pretrained_path)
print('stats ',entity_vocab_size, relation_vocab_size, type_vocab_size)
datasets = []
for dataset_filename in FLAGS.datasets:
wikidata = WikiDataset(dataset_filename, FLAGS.kg_cache_path, tokenizer=text_tokenizer, max_type_ids=type_vocab_size-1)
datasets.append(wikidata)
concat = ConcatDataset( datasets )
# print(wikidata_blink.h5_filename, wikidata_luke.h5_filename)
data_collator = KG_DataCollatorForLanguageModeling(tokenizer=text_tokenizer,
mlm=True,
tokenizer_name=FLAGS.pretrained_name,
mlm_probability=FLAGS.mlm_prob,
vocab_size=len(text_tokenizer),
ent_vocab_size=entity_vocab_size,
)
train_loader = DataLoader(concat, batch_size=FLAGS.batch_size,
num_workers=FLAGS.num_workers, shuffle=True, collate_fn=data_collator)
dbpedia_dataset = Dbpedia(
os.path.join(FLAGS.kg_filename_path,'train.txt'), 'train', datasetname='ntee_2014')
looper = infiniteloop( DataLoader(dbpedia_dataset, batch_size=FLAGS.kg_batch_size,
num_workers=FLAGS.num_workers, shuffle=True), to_cuda=True)
total_epoch = int(FLAGS.total_iterations / len(train_loader)) + 20 # just to be safe
bert_config = FastKGBertConfig(
ent_vocab_size=entity_vocab_size+2,
rel_vocab_size=relation_vocab_size,
type_ent_vocab_size=type_vocab_size,
margin_weight=FLAGS.margin_weight,
kg_weight=FLAGS.kg_weight,
kg_hidden_size=FLAGS.kg_hidden_size,
kg_hidden_layers=FLAGS.kg_hidden_layer,
init_layer_num=FLAGS.init_layers if not FLAGS.baseline else FLAGS.num_layers,
layer_stack_mult=FLAGS.layer_mult if not FLAGS.baseline else -1,
layer_drop_prob=FLAGS.layer_dropout,
pretrained_name=FLAGS.pretrained_name,
vocab_size=len(text_tokenizer),
embed_size=FLAGS.embed_dim,
lm_weight=FLAGS.lm_weight,
diversity_weight=FLAGS.diversity_weight,
kg_self_regul_weight=FLAGS.kg_self_regul_weight,
hidden_size=FLAGS.hidden_dim,
num_hidden_layers=FLAGS.num_layers,
num_attention_heads=FLAGS.heads,
intermediate_size=FLAGS.intermediate_size,
hidden_act="gelu",
total_iterations=FLAGS.total_iterations,
max_position_embeddings=FLAGS.max_length,
position_bucket_size=64,
type_vocab_size= 1 if 'roberta' in FLAGS.pretrained_name else 2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=text_tokenizer.pad_token_id,
)
print('Train with KG ?', FLAGS.with_kg)
model = EntityDisambiguation(bert_config, w_kg=FLAGS.with_kg)
# if 'DKGE' in FLAGS.kg_pretrained_path:
# model.knowledge_model = distmult
pretrained_model = AutoModelForMaskedLM.from_pretrained(FLAGS.pretrained_name)
model.bert = pretrained_model.roberta
model.cls = pretrained_model.lm_head
for name, params in model.bert.named_parameters():
if 'embeddings' in name:
params.requires_grad = False
elif 'encoder.layer' in name:
layer_num = int(name.split('encoder.layer.', 1)[1].split('.', 1)[0])
if layer_num < 5:
params.requires_grad = False
if FLAGS.load_pretrain:
print('load pretrain weights')
model.knowledge_model.load_state_dict(kg_model.state_dict())
else:
print('No load pretrain weights')
if FLAGS.mine_negative_sampling and FLAGS.ckpt and len(FLAGS.ckpt) > 0:
from cmed.utils import mine_negative_samples
negative_mine_file = FLAGS.ckpt+'_negative_matrix'
if os.path.exists(negative_mine_file):
negative_matrix = torch.load(negative_mine_file, map_location='cpu')
else:
weights = torch.load(FLAGS.ckpt, map_location='cpu')
state_dict = weights['state_dict']
new_state_dict = {}
for key, tensor in state_dict.items():
new_state_dict[key.replace('net.', '')] = tensor
model.load_state_dict(new_state_dict)
negative_matrix = mine_negative_samples(model.knowledge_model.ent_embeddings.weight, neg_size=model.neg_window_size)
torch.save(negative_matrix, negative_mine_file)
model.negative_matrix = negative_matrix
print('finish negative mining')
checkpoint_callback = pl.callbacks.ModelCheckpoint(filepath=os.path.join('./', FLAGS.name))
bert_config.to_file(os.path.join('./', FLAGS.name, 'config'))
logger = TensorBoardLogger(
save_dir=os.getcwd(),
name=FLAGS.name,
)
logger.experiment.add_text('hyperparameter', FLAGS.flags_into_string().replace('\n', ' \n'), 0)
lr_logger = LearningRateLogger(logging_interval='step')
total_iterations = FLAGS.total_iterations
module = EntityLinkingLearner(model, total_iterations=FLAGS.total_iterations, looper=looper)
distributed_backend = None
if FLAGS.num_gpus > 1:
distributed_backend = 'ddp'
trainer = pl.Trainer(
logger=logger,
resume_from_checkpoint=FLAGS.ckpt if FLAGS.ckpt and len(FLAGS.ckpt) > 0 else None,
gpus=FLAGS.num_gpus, max_epochs=total_epoch,
distributed_backend=distributed_backend,
#plugins='apex_amp',
checkpoint_callback=checkpoint_callback,
accumulate_grad_batches=FLAGS.grad_accumulation,
precision= 16 if FLAGS.use_amp else 32,
amp_level= 'O1' if FLAGS.use_amp else None,
callbacks=[
CheckpointEveryNSteps(
save_step_frequency=5000,
prefix=os.path.join(FLAGS.name, FLAGS.model_name),
total_checkpoint=5,
),
lr_logger,
])
trainer.fit(module, train_loader)