-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathlosses.py
62 lines (52 loc) · 1.92 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import torch
import torch.nn as nn
import torch.nn.functional as F
class BCEWithLogits(nn.Module):
def __init__(self):
super().__init__()
self.bce = nn.BCEWithLogitsLoss()
def forward(self, pred_real, pred_fake=None):
if pred_fake is not None:
loss_real = self.bce(pred_real, torch.ones_like(pred_real))
loss_fake = self.bce(pred_fake, torch.zeros_like(pred_fake))
loss = loss_real + loss_fake
return loss, loss_real, loss_fake
else:
loss = self.bce(pred_real, torch.ones_like(pred_real))
return loss
class HingeLoss(nn.Module):
def forward(self, pred_real, pred_fake=None):
if pred_fake is not None:
loss_real = F.relu(1 - pred_real).mean()
loss_fake = F.relu(1 + pred_fake).mean()
loss = loss_real + loss_fake
return loss, loss_real, loss_fake
else:
loss = -pred_real.mean()
return loss
class Wasserstein(nn.Module):
def forward(self, pred_real, pred_fake=None):
if pred_fake is not None:
loss_real = pred_real.mean()
loss_fake = pred_fake.mean()
loss = -loss_real + loss_fake
return loss, loss_real, loss_fake
else:
loss = -pred_real.mean()
return loss
class BCE(nn.Module):
def __init__(self):
super().__init__()
self.bce = nn.BCELoss()
def forward(self, pred_real, pred_fake=None):
if pred_fake is not None:
loss_real = self.bce(
(pred_real + 1) / 2, torch.ones_like(pred_real))
loss_fake = self.bce(
(pred_fake + 1) / 2, torch.zeros_like(pred_fake))
loss = loss_real + loss_fake
return loss, loss_real, loss_fake
else:
loss = self.bce(
(pred_real + 1) / 2, torch.ones_like(pred_real))
return loss