diff --git a/src/hierarchies/betagg_hierarchy.h b/src/hierarchies/betagg_hierarchy.h index eca263a7f..c2e487679 100644 --- a/src/hierarchies/betagg_hierarchy.h +++ b/src/hierarchies/betagg_hierarchy.h @@ -8,7 +8,22 @@ #include "updaters/random_walk_updater.h" /** + * Beta Gamma-Gamma hierarchy for univaraite data in [0, 1] * + * This class represents a hierarchical model where data are distributed + * according to a Beta likelihood (see the `BetaLikelihood` class for + * details). The shape and rate parameters of the likelihood have + * independent gamma priors. That is + * + * \f[ + * f(x_i \mid \alpha, \beta) &= Beta(\alpha, \beta) \\ + * \alpha &\sim Gamma(\alpha_a, \alpha_b) \\ + * \beta &\sim Gamma(\beta_a, \beta_b) + * \f] + * + * The state is composed of shape and rate. Note that this hierarchy + * is NOT conjugate, meaning that the marginal distribution is not available + * in closed form. */ class BetaGGHierarchy diff --git a/src/hierarchies/likelihoods/beta_likelihood.cc b/src/hierarchies/likelihoods/beta_likelihood.cc index ff998cfe3..ddd08df13 100644 --- a/src/hierarchies/likelihoods/beta_likelihood.cc +++ b/src/hierarchies/likelihoods/beta_likelihood.cc @@ -4,14 +4,6 @@ double BetaLikelihood::compute_lpdf(const Eigen::RowVectorXd &datum) const { return stan::math::beta_lpdf(datum(0), state.shape, state.rate); } -// Eigen::VectorXd BetaLikelihood::sample() const { -// Eigen::VectorXd out(1); -// auto &rng = bayesmix::Rng::Instance().get(); -// out(0) = stan::math::beta_rng(state.shape, state.rate, rng); -// out = out.cwiseMin(1.0 - 1e-8).cwiseMax(1e-8); -// return out; -// } - void BetaLikelihood::update_sum_stats(const Eigen::RowVectorXd &datum, bool add) { double x = datum(0); diff --git a/src/hierarchies/likelihoods/beta_likelihood.h b/src/hierarchies/likelihoods/beta_likelihood.h index 8feba0452..d99a2aa84 100644 --- a/src/hierarchies/likelihoods/beta_likelihood.h +++ b/src/hierarchies/likelihoods/beta_likelihood.h @@ -30,8 +30,6 @@ class BetaLikelihood bool is_dependent() const override { return false; }; void clear_summary_statistics() override; - // Eigen::VectorXd sample() const override; - template T cluster_lpdf_from_unconstrained( const Eigen::Matrix &unconstrained_params) const { diff --git a/src/hierarchies/priors/gamma_gamma_prior.h b/src/hierarchies/priors/gamma_gamma_prior.h index 375cf61b1..9ce995771 100644 --- a/src/hierarchies/priors/gamma_gamma_prior.h +++ b/src/hierarchies/priors/gamma_gamma_prior.h @@ -10,6 +10,11 @@ #include "hyperparams.h" #include "src/utils/rng.h" +/* + * Prior model for `ShapeRate` states. + * This class assumes that the shape and rate are independent and given + * Gamma-distributed priors + */ class GGPriorModel : public BasePriorModel { diff --git a/src/proto/distribution.proto b/src/proto/distribution.proto index 81db3ffc8..785e2f3ae 100644 --- a/src/proto/distribution.proto +++ b/src/proto/distribution.proto @@ -96,9 +96,13 @@ message MultiNormalIGDistribution { double scale = 4; } +/* + * Parameters for the product of two independent Gamma distributions with different + * rates and shapes + */ message GamGamDistribution { double a_shape = 1; double a_rate = 2; double b_shape = 3; double b_rate = 4; -} \ No newline at end of file +} diff --git a/src/proto/hierarchy_prior.proto b/src/proto/hierarchy_prior.proto index 19062a639..7722e29c3 100644 --- a/src/proto/hierarchy_prior.proto +++ b/src/proto/hierarchy_prior.proto @@ -131,4 +131,4 @@ message GGPrior { oneof prior { GamGamDistribution fixed_values = 1; } -} \ No newline at end of file +} diff --git a/src/proto/ls_state.proto b/src/proto/ls_state.proto index ed09522a1..6794185c5 100644 --- a/src/proto/ls_state.proto +++ b/src/proto/ls_state.proto @@ -38,7 +38,10 @@ message FAState { Matrix lambda = 4; } +/* + * Parameters of a shape-rate state, used, e.g., by the BetaLikelihood + */ message SRState { double shape = 1; double rate = 2; -} \ No newline at end of file +}