-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLTree.hs
228 lines (142 loc) · 6.11 KB
/
LTree.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
-- (c) MP-I (1998/9-2006/7) and CP (2005/6-2018/9)
module LTree where
import Cp
import Data.Monoid
import Control.Applicative
import List
-- (1) Datatype definition -----------------------------------------------------
data LTree a = Leaf a | Fork (LTree a, LTree a) deriving (Show, Eq)
inLTree = either Leaf Fork
outLTree :: LTree a -> Either a (LTree a,LTree a)
outLTree (Leaf a) = i1 a
outLTree (Fork (t1,t2)) = i2 (t1,t2)
baseLTree g f = g -|- (f >< f)
-- (2) Ana + cata + hylo -------------------------------------------------------
recLTree f = baseLTree id f -- that is: id -|- (f >< f)
cataLTree g = g . (recLTree (cataLTree g)) . outLTree
anaLTree f = inLTree . (recLTree (anaLTree f) ) . f
hyloLTree a c = cataLTree a . anaLTree c
-- (3) Map ---------------------------------------------------------------------
instance Functor LTree
where fmap f = cataLTree ( inLTree . baseLTree f id )
-- (4) Examples ----------------------------------------------------------------
-- (4.0) Inversion (mirror) ----------------------------------------------------
invLTree = cataLTree (inLTree . (id -|- swap))
{-- Recall the pointwise version:
invLTree (Leaf a) = Leaf a
invLTree (Fork (a,b)) = Fork (invLTree b,invLTree a)
--}
-- (4.1) Counting --------------------------------------------------------------
countLTree = cataLTree (either one add)
-- (4.2) Serialization ---------------------------------------------------------
tips = cataLTree (either singl conc)
-- (4.3) Double factorial ------------------------------------------------------
dfac 0 = 1
dfac n = hyloLTree (either id mul) dfacd (1,n) where mul(x,y)=x*y
dfacd(n,m) | n==m = i1 n
| otherwise = i2 ((n,k),(k+1,m))
where k = div (n+m) 2
-- (4.4) Double square function ------------------------------------------------
-- recall sq' in RList.hs in...
dsq' 0 = 0
dsq' n = (cataLTree (either id add) . fmap (\n->2*n-1) . (anaLTree dfacd)) (1,n)
-- where add(x,y)=x+y
-- that is
dsq 0 = 0
dsq n = (hyloLTree (either id add) (fdfacd nthodd)) (1,n)
where nthodd n = 2*n - 1
fdfacd f (n,m) | n==m = i1 (f n)
| otherwise = i2 ((n,k),(k+1,m))
where k = div (n+m) 2
-- (4.5) Fibonacci -------------------------------------------------------------
fib = hyloLTree (either one add) fibd
-- where
fibd n | n < 2 = i1 ()
| otherwise = i2 (n-1,n-2)
-- (4.6) Merge sort ------------------------------------------------------------
mSort :: Ord a => [a] -> [a]
mSort [] = []
mSort l = hyloLTree (either singl merge) lsplit l
--where
-- singl x = [x]
merge (l,[]) = l
merge ([],r) = r
merge (x:xs,y:ys) | x < y = x : merge(xs,y:ys)
| otherwise = y : merge(x:xs,ys)
lsplit [x] = i1 x
lsplit l = i2 (sep l) where
sep [] = ([],[])
sep (h:t) = let (l,r) = sep t in (h:r,l) -- a List cata
{-- pointwise version:
mSort :: Ord a => [a] -> [a]
mSort [] = []
mSort [x] = [x]
mSort l = let (l1,l2) = sep l
in merge(mSort l1, mSort l2)
--}
-- (4.7) Double map (unordered lists) ------------------------------------------
dmap :: (b -> a) -> [b] -> [a]
dmap f [] = []
dmap f x = (hyloLTree (either (singl.f) conc) lsplit) x
-- (4.8) Double map (keeps the order) ------------------------------------------
dmap1 :: (b -> a) -> [b] -> [a]
dmap1 f [] = []
dmap1 f x = (hyloLTree (either (singl.f) conc) divide) x
where divide [x] = i1 x
divide l = i2 (split (take m) (drop m) l) where m = div (length l) 2
-- (4.8) Combinations ----------------------------------------------------------
comb = hyloLTree (either id add) divide
divide(n,k) = if k `elem` [0,n] then i1 1 else i2((n-1,k),(n-1,k-1))
{-- pointwise: comb (n,k) = if k `elem` [0,n] then 1 else comb(n-1,k)+comb(n-1,k-1) --}
-- (5) Monad -------------------------------------------------------------------
instance Monad LTree where
return = Leaf
t >>= g = (mu . fmap g) t
instance Strong LTree
mu :: LTree (LTree a) -> LTree a
mu = cataLTree (either id Fork)
{-- fmap :: (Monad m) => (t -> a) -> m t -> m a
fmap f t = do { a <- t ; return (f a) }
--}
-- (6) Going polytipic -------------------------------------------------------
-- natural transformation from base functor to monoid
tnat :: Monoid c => (a -> c) -> Either a (c, c) -> c
tnat f = either f (uncurry mappend)
-- monoid reduction
monLTree f = cataLTree (tnat f)
-- alternative to (4.2) serialization ----------------------------------------
tips' = monLTree singl
-- alternative to (4.1) counting ---------------------------------------------
countLTree' = monLTree (const (Sum 1))
-- distributive law ----------------------------------------------------------
dlLTree :: Strong f => LTree (f a) -> f (LTree a)
dlLTree = cataLTree (either (fmap Leaf) (fmap Fork .dstr))
-- (7) Zipper ----------------------------------------------------------------
data Deriv a = Dr Bool (LTree a)
type Zipper a = [ Deriv a ]
plug :: Zipper a -> LTree a -> LTree a
plug [] t = t
plug ((Dr False l):z) t = Fork (plug z t,l)
plug ((Dr True r):z) t = Fork (r,plug z t)
-- (8) Advanced --------------------------------------------------------------
instance Applicative LTree where
pure = return
(<*>) = aap
-- (9) Spine representation --------------------------------------------------
roll = inLTree.(id -|- roll>< id).beta.(id><outList')
spinecata g = g . (id -|- (spinecata g)>< id).spineOut
spineOut = beta.(id><outList')
outList' [] = i1()
outList' x = i2(last x, blast x)
blast = reverse . tail . reverse
inList' = either nil snoc
snoc(a,x)= x++[a]
unroll = (id><inList').alpha.(id -|- unroll>< id).outLTree
alpha :: Either a ((a, t), t1) -> (a, Either () (t1, t))
alpha(Left a) = (a,Left())
alpha(Right ((a,ts),t)) = (a,Right(t,ts))
beta :: (a, Either () (t1, t)) -> Either a ((a, t), t1)
beta(a,Left()) = Left a
beta(a,Right(t,ts)) = Right ((a,ts),t)
height = cataLTree (either id (uncurry ht)) where ht a b = 1 + (max a b)
---------------------------- end of library ----------------------------------