import onnx
onnx_model = onnx.load('path/to/the/model.onnx')
# `onnx_model` is a ModelProto struct
Runnable IPython notebooks:
import onnx
onnx_model = ... # Your model in memory as ModelProto
# Save the ONNX model
onnx.save(onnx_model, 'path/to/the/model.onnx')
Runnable IPython notebooks:
import numpy
import onnx
from onnx import numpy_helper
# Preprocessing: create a Numpy array
numpy_array = numpy.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], dtype=float)
print('Original Numpy array:\n{}\n'.format(numpy_array))
# Convert the Numpy array to a TensorProto
tensor = numpy_helper.from_array(numpy_array)
print('TensorProto:\n{}'.format(tensor))
# Convert the TensorProto to a Numpy array
new_array = numpy_helper.to_array(tensor)
print('After round trip, Numpy array:\n{}\n'.format(numpy_array))
# Save the TensorProto
with open('tensor.pb', 'wb') as f:
f.write(tensor.SerializeToString())
# Load a TensorProto
new_tensor = onnx.TensorProto()
with open('tensor.pb', 'rb') as f:
new_tensor.ParseFromString(f.read())
print('After saving and loading, new TensorProto:\n{}'.format(new_tensor))
Runnable IPython notebooks:
import onnx
from onnx import helper
from onnx import AttributeProto, TensorProto, GraphProto
# The protobuf definition can be found here:
# https://github.com/onnx/onnx/blob/master/onnx/onnx.proto
# Create one input (ValueInfoProto)
X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 2])
# Create one output (ValueInfoProto)
Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 4])
# Create a node (NodeProto)
node_def = helper.make_node(
'Pad', # node name
['X'], # inputs
['Y'], # outputs
mode='constant', # attributes
value=1.5,
pads=[0, 1, 0, 1],
)
# Create the graph (GraphProto)
graph_def = helper.make_graph(
[node_def],
'test-model',
[X],
[Y],
)
# Create the model (ModelProto)
model_def = helper.make_model(graph_def, producer_name='onnx-example')
print('The model is:\n{}'.format(model_def))
onnx.checker.check_model(model_def)
print('The model is checked!')
Runnable IPython notebooks:
import onnx
# Preprocessing: load the ONNX model
model_path = 'path/to/the/model.onnx'
onnx_model = onnx.load(model_path)
print('The model is:\n{}'.format(onnx_model))
# Check the model
onnx.checker.check_model(onnx_model)
print('The model is checked!')
Runnable IPython notebooks:
import onnx
from onnx import optimizer
# Preprocessing: load the model to be optimized.
model_path = 'path/to/the/model.onnx'
original_model = onnx.load(model_path)
print('The model before optimization:\n{}'.format(original_model))
# A full list of supported optimization passes can be found here:
# https://github.com/onnx/onnx/blob/master/onnx/optimizer.py#L21
passes = ['fuse_consecutive_transposes']
# Apply the optimization on the original model
optimized_model = optimizer.optimize(original_model, passes)
print('The model after optimization:\n{}'.format(optimized_model))
# One can also apply the default passes on the (serialized) model
# Check the default passes here: https://github.com/onnx/onnx/blob/master/onnx/optimizer.py#L34
optimized_model = optimizer.optimize(original_model)
Runnable IPython notebooks:
import onnx
from onnx import helper, shape_inference
from onnx import TensorProto
# Preprocessing: create a model with two nodes, Y's shape is unknown
node1 = helper.make_node('Transpose', ['X'], ['Y'], perm=[1, 0, 2])
node2 = helper.make_node('Transpose', ['Y'], ['Z'], perm=[1, 0, 2])
graph = helper.make_graph(
[node1, node2],
'two-transposes',
[helper.make_tensor_value_info('X', TensorProto.FLOAT, (2, 3, 4))],
[helper.make_tensor_value_info('Z', TensorProto.FLOAT, (2, 3, 4))],
)
original_model = helper.make_model(graph, producer_name='onnx-examples')
# Check the model and print Y's shape information
onnx.checker.check_model(original_model)
print('Before shape inference, the shape info of Y is:\n{}'.format(original_model.graph.value_info))
# Apply shape inference on the model
inferred_model = shape_inference.infer_shapes(original_model)
# Check the model and print Y's shape information
onnx.checker.check_model(inferred_model)
print('After shape inference, the shape info of Y is:\n{}'.format(inferred_model.graph.value_info))
Runnable IPython notebooks:
Function polish_model
runs model checker, optimizer, shape inference engine on the model,
and also strips the doc_string for you.
import onnx
import onnx.utils
model = onnx.load('path/to/the/model.onnx')
polished_model = onnx.utils.polish_model(model)