-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_data.py
367 lines (300 loc) · 17.7 KB
/
preprocess_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import json
import math
import re
import pandas as pd
from sklearn.model_selection import train_test_split
team_name_to_location = {}
team_name_to_location['atlanta hawks'] = ('State Farm Arena', 'Atlanta, Georgia')
team_name_to_location['boston celtics'] = ('TD Garden', 'Boston, Massachusetts')
team_name_to_location['brooklyn nets'] = ('Barclays Center', 'Brooklyn, New York')
team_name_to_location['charlotte hornets'] = ('Spectrum Center', 'Charlotte, North Carolina')
team_name_to_location['chicago bulls'] = ('United Center', 'Chicago, Illinois')
team_name_to_location['cleveland cavaliers'] = ('Rocket Mortgage Fieldhouse', 'Cleveland, Ohio')
team_name_to_location['dallas mavericks'] = ('American Airlines Center', 'Dallas, Texas')
team_name_to_location['denver nuggets'] = ('Pepsi Center', 'Denver, Colorado')
team_name_to_location['detroit pistons'] = ('Little Caesars Arena', 'Detroit, Michigan')
team_name_to_location['golden_state warriors'] = ('Chase Center', 'San Francisco, California')
team_name_to_location['houston rockets'] = ('Toyota Center', 'Houston, Texas')
team_name_to_location['indiana pacers'] = ('Bankers Life Fieldhouse', 'Indianapolis, Indiana')
team_name_to_location['los_angeles clippers'] = ('Staples Center', 'Los Angeles, California')
team_name_to_location['los_angeles lakers'] = ('Staples Center', 'Los Angeles, California')
team_name_to_location['memphis grizzlies'] = ('Fedex Forum', 'Memphis, Tennessee')
team_name_to_location['miami heat'] = ('American Airlines Arena', 'Miami, Florida')
team_name_to_location['milwaukee bucks'] = ('Fiserv Forum', 'Milwaukee, Wisconsin')
team_name_to_location['minnesota timberwolves'] = ('Target Center', 'Minneapolis, Minnesota')
team_name_to_location['new_orleans pelicans'] = ('Smoothie King Center', 'New Orleans, Louisiana')
team_name_to_location['new_york knicks'] = ('Madison Square Garden', 'New York')
team_name_to_location['oklahoma_city thunder'] = ('Chesapeake Energy Arena', 'Oklahoma')
team_name_to_location['orlando magic'] = ('Amway Center', 'Orlando, Florida')
team_name_to_location['philadelphia 76ers'] = ('Wells Fargo Center', 'Philadelphia, Pennsylvania')
team_name_to_location['phoenix suns'] = ('Talking Stick Resort Arena', 'Phoenix, Arizona')
team_name_to_location['portland trail_blazers'] = ('Moda Center', 'Portland, Oregon')
team_name_to_location['sacramento kings'] = ('Golden 1 Center', 'Sacramento, California')
team_name_to_location['san_antonio spurs'] = ('AT&T Center', 'San Antonio, Texas')
team_name_to_location['toronto raptors'] = ('Scotiabank Arena', 'Toronto, Ontario')
team_name_to_location['utah jazz'] = ('Vivint Smart Home Arena', 'Salt Lake City, Utah')
team_name_to_location['washington wizards'] = ('Capital One Arena', 'Washington, D.C.')
def read_position_csv(file_name):
return pd.read_csv(file_name)
players_position_data = read_position_csv('./inputs/player_to_position.csv')
players_position_data = dict(zip(players_position_data['PLAYER'].str.lower(), players_position_data['POS']))
class Player:
def __init__(self, player_stats_dict):
self.player_stats_dict = player_stats_dict
def add_stat(self, stat_name, value):
self.player_stats_dict[stat_name] = value
def is_home(self):
return self.player_stats_dict['IS_HOME'] == 'yes'
class Team:
def __init__(self, team_stats_dict, players):
self.team_stats_dict = team_stats_dict
self.players = players
self.filter_players()
def filter_players(self):
self.players.sort(key=lambda player: int(player.player_stats_dict['MIN']), reverse=True)
players = [player for player in self.players if player.player_stats_dict['STARTER'] == 'yes']
other_players = [p for p in self.players if p.player_stats_dict['STARTER'] == 'no'][:2]
self.players = players + other_players
def add_stat(self, stat_name, value):
self.team_stats_dict[stat_name] = value
def get_team_arena_and_location(self):
self.arena_and_location = team_name_to_location[
self.team_stats_dict['TEAM_PLACE'].lower() + ' ' + self.team_stats_dict['TEAM_NAME'].lower()]
def process_player(entry_data):
player = Player({})
for stat in entry_data:
value, stat_name = stat.split('│')
player.add_stat(stat_name, value)
return player
def process_team(entry_data, players_list):
team = Team({}, players_list)
for stat in entry_data[:-1]:
value, stat_name = stat.split('│')
team.add_stat(stat_name, value)
team.get_team_arena_and_location()
return team
def process_game_stats(game_data):
home_team_players = []
away_team_players = []
game_data = game_data.split('<ent>│<ent>')[1:]
for index, entry in enumerate(game_data):
if index == len(game_data) - 1:
entry_data = entry.split(' ')[1:]
else:
entry_data = entry.split(' ')[1:-1]
if '<blank>│<blank>' not in entry_data[-1]:
player = process_player(entry_data)
if player.is_home():
home_team_players.append(player)
else:
away_team_players.append(player)
else:
if entry_data[-2] == 'yes│IS_HOME':
home_team = process_team(entry_data, home_team_players)
else:
away_team = process_team(entry_data, away_team_players)
return home_team, away_team
def get_team_info(team_dict):
city = team_dict["TEAM_PLACE"]
name = team_dict["TEAM_NAME"]
wins = int(team_dict["TEAM_WINS"])
losses = int(team_dict["TEAM_LOSSES"])
pts = int(team_dict["TEAM-PTS"])
pts_q1 = int(team_dict["TEAM-PTS-QTR1"])
pts_q2 = int(team_dict["TEAM-PTS-QTR2"])
pts_q3 = int(team_dict["TEAM-PTS-QTR3"])
pts_q4 = int(team_dict["TEAM-PTS-QTR4"])
fgm = int(team_dict["TEAM-FGM"])
fga = int(team_dict["TEAM-FGA"])
fg_pct = math.floor(float(team_dict["TEAM-FG_PCT"]) * 100)
fg3m = int(team_dict["TEAM-FG3M"])
fg3a = int(team_dict["TEAM-FG3A"])
fg3_pct = math.floor(float(team_dict["TEAM-FG3_PCT"]) * 100)
ftm = int(team_dict["TEAM-FTM"])
fta = int(team_dict["TEAM-FTA"])
ft_pct = math.floor(float(team_dict["TEAM-FT_PCT"]) * 100)
reb = int(team_dict["TEAM-REB"])
ast = int(team_dict["TEAM-AST"])
tov = int(team_dict["TEAM-TOV"])
return city, name, wins, losses, pts, pts_q1, pts_q2, pts_q3, pts_q4, fgm, fga, fg_pct, fg3m, fg3a, fg3_pct, ftm, fta, ft_pct, reb, ast, tov
def get_quarter_score_line(quarter, home_full_name, vis_full_name, home_q_pts, vis_q_pts, paragraph):
quarter_score_win = " the %s outscored the %s %d - %d in the %s quarter "
quarter_score_tie = " the game was tied at %d at the end of the %s quarter "
home_won = home_q_pts > vis_q_pts
tie = home_q_pts == vis_q_pts
if home_won:
paragraph.append(quarter_score_win % (home_full_name, vis_full_name, home_q_pts, vis_q_pts, quarter))
elif tie:
paragraph.append(quarter_score_tie % (home_q_pts, quarter))
else:
paragraph.append(quarter_score_win % (vis_full_name, home_full_name, vis_q_pts, home_q_pts, quarter))
def get_player_position(player_name):
player_name = player_name.replace("_", " ")
player_name = player_name.lower()
if player_name not in players_position_data:
return ""
return players_position_data[player_name]
def get_players_line(players, team_name, paragraph):
player_line = "%s , playing for %s , %s , played %d minutes , scored %d points ( %d - %d with %d percent from " \
"the field , %d - %d with %d percent from three point range and %d - %d with %d percent from free " \
"throw line ) , he contributed %d rebounds ( %d offensive rebounds ) , %d assists, %d steals , " \
"%d blocks , and committed %d fouls and %d turnovers "
for player in players:
player_data = player.player_stats_dict
player_full_name = player_data['FIRST_NAME'] + " " + player_data['LAST_NAME']
position = get_player_position(player_full_name)
if position != '':
if player_data['STARTER'] == "yes":
position_passage = "started at " + position
else:
position_passage = "came off the bench as " + position
else:
if player_data['STARTER'] == "yes":
position_passage = "as a starter"
else:
position_passage = "off the bench"
player_line_values = player_line % (player_full_name, team_name, position_passage,
int(player_data["MIN"]), int(player_data["PTS"]),
int(player_data["FGM"]), int(player_data["FGA"]),
math.floor(float(
0 if player_data['FG_PCT'] == 'N/A' else player_data['FG_PCT']) * 100),
int(player_data["FG3M"]), int(player_data["FG3A"]),
math.floor(float(
0 if player_data['FG3_PCT'] == 'N/A' else player_data[
'FG3_PCT']) * 100),
int(player_data["FTM"]), int(player_data["FTA"]),
math.floor(float(
0 if player_data['FT_PCT'] == 'N/A' else player_data['FT_PCT']) * 100),
int(player_data["REB"]), int(player_data["OREB"]),
int(player_data["AST"]), int(player_data["STL"]),
int(player_data["BLK"]), int(player_data["PF"]), int(player_data['TO']))
player_line_values = player_line_values.replace("0 - 0 shooting with 0 percent , ", "")
player_line_values = player_line_values.replace("0 - 0 with 0 percent from three point range and ", "")
player_line_values = player_line_values.replace("0 - 0 with 0 percent from free throw line", "")
player_line_values = player_line_values.replace("()", "")
player_line_values = player_line_values.replace("( )", "")
player_line_values = player_line_values.replace("( )", "")
player_line_values = player_line_values.replace(" ", "")
player_line_values = player_line_values.replace(" ( 0 offensive rebounds )", "")
paragraph.append(player_line_values)
def get_team_additional_stats(team_city, team_name, fgm, fga, fg_pct, fg3m, fg3a, fg3_pct, ftm, fta, ft_pct, reb, ast,
tov, paragraph):
stats = "%s shot %d - of - %d with %d percent from the field , %d - of - %d with %d percent from three - point " \
"range and %d - of - %d with %d percent from the free - throw line . %s , as a team added %d assists and %d " \
"rebounds . The %s were forced into %d turnovers "
paragraph.append(stats % (
team_city, fgm, fga, fg_pct, fg3m, fg3a, fg3_pct, ftm, fta, ft_pct, team_city, ast, reb, team_name, tov))
def game_stats_to_text(home_team, away_team):
first_line = "The %s ( %d - %d ) defeated the %s ( %d - %d ) %d - %d at the %s in %s "
paragraph = []
home_city, home_name, home_wins, home_losses, home_pts, home_pts_q1, home_pts_q2, home_pts_q3, home_pts_q4, home_fgm, \
home_fga, home_fg_pct, home_fg3m, home_fg3a, home_fg3_pct, home_ftm, home_fta, \
home_ft_pct, home_reb, home_ast, home_tov = get_team_info(home_team.team_stats_dict)
home_full_name = home_city + " " + home_name
vis_city, vis_name, vis_wins, vis_losses, vis_pts, vis_pts_q1, vis_pts_q2, vis_pts_q3, vis_pts_q4, vis_fgm, vis_fga, \
vis_fg_pct, vis_fg3m, vis_fg3a, vis_fg3_pct, vis_ftm, vis_fta, vis_ft_pct, \
vis_reb, vis_ast, vis_tov = get_team_info(away_team.team_stats_dict)
vis_full_name = vis_city + " " + vis_name
home_won = home_pts > vis_pts
teams_paragraph = []
if home_won:
teams_paragraph.append(first_line % (home_city + " " + home_name, home_wins, home_losses,
vis_city + " " + vis_name, vis_wins, vis_losses, home_pts, vis_pts,
home_team.arena_and_location[0], home_team.arena_and_location[1]))
else:
teams_paragraph.append(first_line % (vis_city + " " + vis_name, vis_wins, vis_losses,
home_city + " " + home_name, home_wins, home_losses, vis_pts, home_pts,
home_team.arena_and_location[0], home_team.arena_and_location[1]))
get_quarter_score_line("first", home_full_name, vis_full_name, home_pts_q1, vis_pts_q1, teams_paragraph)
get_quarter_score_line("second", home_full_name, vis_full_name, home_pts_q2, vis_pts_q2, teams_paragraph)
get_quarter_score_line("third", home_full_name, vis_full_name, home_pts_q3, vis_pts_q3, teams_paragraph)
get_quarter_score_line("fourth", home_full_name, vis_full_name, home_pts_q4, vis_pts_q4, teams_paragraph)
paragraph.append('.'.join(teams_paragraph))
get_team_additional_stats(home_city, home_name, home_fgm, home_fga, home_fg_pct, home_fg3m, home_fg3a, home_fg3_pct,
home_ftm, home_fta, home_ft_pct, home_reb, home_ast, home_tov, paragraph)
get_team_additional_stats(vis_city, vis_name, vis_fgm, vis_fga, vis_fg_pct, vis_fg3m, vis_fg3a, vis_fg3_pct,
vis_ftm, vis_fta, vis_ft_pct, vis_reb, vis_ast, vis_tov, paragraph)
home_players_paragraph = []
vis_players_paragraph = []
get_players_line(home_team.players, home_city, home_players_paragraph)
get_players_line(away_team.players, vis_city, vis_players_paragraph)
paragraph.extend(home_players_paragraph)
paragraph.extend(vis_players_paragraph)
return paragraph
# ************************************
# ****** summaries preprocess ********
# ************************************
def summaries_cleaner(blacklist, summary):
clean_summary = []
i = 0
sentences = summary.split(".")
n = len(sentences)
for sentence in sentences:
if i == 0 or i == 1 or not is_black_list_in_sent(sentence, blacklist):
if i == n - 1 and sentence == '\n':
clean_summary.pop()
clean_summary.append(sentence)
elif i != n - 1:
clean_summary.append(sentence)
else:
clean_summary.append('\n')
else:
clean_sent = remove_sub_sent(sentence, blacklist)
if clean_sent:
clean_summary.append(remove_sub_sent(sentence, blacklist))
i += 1
return '.'.join(clean_summary)
def is_black_list_in_sent(sent, blacklist):
return re.search(blacklist, sent, flags=re.IGNORECASE)
def remove_sub_sent(sent, blacklist):
clean_sent = []
if sent.startswith(('Next ,', ' Next ,', 'Up next ,', ' Up next ,', ' Next up ,', 'Next up ,')):
return ''
for sub_sent in sent.split(","):
if not is_black_list_in_sent(sub_sent, blacklist):
clean_sent.append(sub_sent)
return ','.join(clean_sent)
# ************************************
# *** summaries preprocess end *******
# ************************************
idx = 0
def create_json_format(summary, descriptions):
global idx
idx += 1
return {
'id': str(idx),
'summary': summary,
'descriptions': descriptions
}
def preprocess_data(input_files, output_file_name, blacklist):
json_elements = []
for input_file_name in input_files:
with open(input_file_name + "_data.txt", "r", encoding="utf8") as stats_input_file:
with open(input_file_name + "_text.txt", "r", encoding="utf8") as summaries_input_file:
stats = stats_input_file.readlines()
summaries = summaries_input_file.readlines()
for i in range(len(stats)):
home_team, away_team = process_game_stats(stats[i])
descriptions = game_stats_to_text(home_team, away_team)
summary = summaries_cleaner(blacklist, summaries[i])
json_elements.append(create_json_format(summary, descriptions))
train, test = train_test_split(json_elements, test_size=0.2)
val, test = train_test_split(test, test_size=0.95)
write_output_file(output_file_name, '_train.json', train)
write_output_file(output_file_name, '_test.json', test)
write_output_file(output_file_name, '_val.json', val)
def write_output_file(output_file_name, file_name_suffix, data):
with open(output_file_name + file_name_suffix, "w") as output_file:
print(json.dumps(data, indent=2), file=output_file)
if __name__ == '__main__':
blacklist = 'injured|injury|injuries|referee|refereeing|referees|judge|judges|judging|judgment|all-star|allstar' \
'|all star|knee|knees|shoulder|shoulders|series|serieses|Achilles|neck|hamstring|Next ,' \
'|\(.[a-z]+.\)|playoff|playoffs|will head|next game|next games|will travel|road trip|road ' \
'trips|road-trip|will look to bounce back|will look to bounce - back|as they take on|as they travel ' \
'to|is a road matchup|as they play host|right back in action|move on to|to face|will host|will ' \
'visit|travel to|Up next ,| return home| returns home|to host| play host|when they host|will try| to ' \
'visit|to take on the| head home| head back home|will return to action|as they visit|be in ' \
'action|play again on|play again until|will be hosting|will be visiting|Next up|Next on the agenda'
input_files = ["./inputs/D1_2014", "./inputs/D1_2015", "./inputs/D1_2016", "./inputs/D1_2017", "./inputs/D1_2018"]
output_file_name = "./inputs/preprocessed_data"
preprocess_data(input_files, output_file_name, blacklist)