forked from lionsimbatoolbox/LIONSIMBA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstartSimulation.m
744 lines (658 loc) · 33.9 KB
/
startSimulation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
function results = startSimulation(t0,tf,initialState,input_density,startParameters)
% startSimulation Starts the simulation of the Li-ion battery.
%
% results = startSimulation(t0,tf,initialStates,input_density,startParameters)
% Starts the simulation of the Li-ion Cell with LIONSIMBA.
%
% Input:
% - t0 : initial integration time
% - tf : final integration time
% - initialStates : structure containing data for initializing the
% states of the battery.
% - input_density : Applied current/power density. If negative, the battery gets
% discharged. If positive, the battery gets charged.
% - startParameters : if provided, it defines the cell array containing the parameters
% structures to be used in the simulation. Every single structure has to be obtained through the Parameters_init script.
% If a cell array of N parameters structures is used, the simulator will perform a simulation with N cells in series.
% If a cell of 1 parameters structure is used, then a single cell will be simulated.
%
% Output:
% - results : structure containing the solution of the dependent
% variables. The stored results have as many rows as time instants
% and columns as number of discrete volumes. If multiple cells are
% simulated, the index i is used to access to the data of the i-th
% cell.
%
% results.Phis{i}: Solid Phase potential
% results.Phie{i}: Liquid Phase potential
% results.ce{i}: Electrolyte concentration
% results.cs_surface{i}: Electrode surface concentration
% results.cs_average{i}: Electrode average concentration
% results.time{i}: Interpolated simulation time
% results.int_internal_time{i}: Integrator time steps
% results.ionic_flux{i}: Ionic flux
% results.side_reaction_flux{i}: Side reaction flux
% results.SOC{i}: State of Charge
% results.SOC_estimated{i}: State of Charge estimate according to the
% user-defined function
% results.Voltage{i}: Cell voltage
% results.Temperature{i}: Cell Temperature
% results.Qrev{i}: Reversible heat generation rate
% results.Qrxn{i}: Reaction heat generation rate
% results.Qohm{i}: Ohmic heat generation rate
% results.film{i}: Side reaction film resistance
% results.R_int{i}: Internal resistance
% results.Up{i}: Cathode open circuit potential
% results.Un{i}: Anode open circuit potential
% results.etap{i}: Cathode overpotential
% results.etan{i}: Anode overpotential
% results.parameters{i}: Parameters used for the simulation
% results.JacobianFun: If evaluated, contains the
% Jacobian matrix
% This file is part of the LIONSIMBA Toolbox
%
% Official web-site: http://sisdin.unipv.it/labsisdin/lionsimba.php
% Official GitHUB: https://github.com/lionsimbatoolbox/LIONSIMBA
%
% LIONSIMBA: A Matlab framework based on a finite volume model suitable for Li-ion battery design, simulation, and control
% Copyright (C) 2016-2018 :Marcello Torchio, Lalo Magni, Davide Raimondo,
% University of Pavia, 27100, Pavia, Italy
% Bhushan Gopaluni, Univ. of British Columbia,
% Vancouver, BC V6T 1Z3, Canada
% Richard D. Braatz,
% Massachusetts Institute of Technology,
% Cambridge, Massachusetts 02142, USA
%
% Main code contributors to LIONSIMBA 2.0:
% Ian Campbell, Krishnakumar Gopalakrishnan,
% Imperial college London, London, UK
%
% LIONSIMBA is a free Matlab-based software distributed with an MIT
% license.
try
test_lionsimba_folder
catch
error('It seems that you did not add to the Matlab path the battery_model_files directory and the folders therein. Please fix this problem and restart the simulation.')
end
% Version of LIONSIMBA
version = '2.1';
if(isempty(startParameters))
% Load battery's parameters if not provided by the user
param{1} = Parameters_init;
else
% Use user provided parameters
param = startParameters;
end
% Validate the input current density/power_density values
if(param{1}.OperatingMode==1 || param{1}.OperatingMode==2)
if(~isreal(input_density) || isnan(input_density) || isinf(input_density) || isempty(input_density))
error('The input current/power densities provided by user is complex valued or is NaN. Please check the values and restart simulation.')
end
end
% Check for environmental tool availability
checkEnvironment(param,nargin);
% If enabled, print the header information
if(param{1}.PrintHeaderInfo==1)
headerInfo(version)
end
% If everything is ok, let's start to simulate.
results = mainCore(t0,tf,initialState,input_density,param);
end
function results = mainCore(t0,tf,initialState,input_density,param)
% Store the original parameters structure in order to return it at the
% end of simulations.
param_original = param;
% Get the total number of cells that have to be simulated.
n_cells = length(param);
% Check if more cells are simulated when potentiostatic conditions are required.
if(param{1}.OperatingMode==3 && n_cells~=1)
clc;
error('!!!ERROR!!! -- Potentiostatic simulations are only possible with single cell packs -- !!!ERROR!!!')
end
% Check if the initial state structure is given
[Y0_existence,YP0_existence,Y0,YP0] = checkInitialStates(initialState);
% Switch among the selected operating modes for defining a suitable getCurrentDensity/getPowerDensity
% function. If multiple cells are being simulated, the variable current/power profile
% or its constant value are retreived from the first element of the
% parameters structures. This is valid because in a series string, all cells carry the same current.
switch(param{1}.OperatingMode)
case 1
param{1}.getCurrentDensity = @(t,t0,tf,x,param,extra)input_density;
case 2
param{1}.getPowerDensity = @(t,t0,tf,x,param,extra)input_density;
case 3
param{1}.getCurrentDensity = @(t,t0,tf,x,param,extra)0; % dummy values, will be over-written by solver
param{1}.getPowerDensity = @(t,t0,tf,x,param,extra)0; % unsure of this?
case 4
param{1}.getCurrentDensity = param{1}.CurrentDensityFunction; % external, i.e. user-supplied function values from external files loaded in parameterisation file
case 5
param{1}.getPowerDensity = param{1}.PowerDensityFunction; % external, i.e. user-supplied function values from external files loaded in parameterisation file
otherwise
error('Operating mode not supported');
end
% Define absolute and relative tolerances. If more cells are required,
% these values are taken from the first parameters structure.
opt.AbsTol = param{1}.AbsTol;
opt.RelTol = param{1}.RelTol;
n_diff = zeros(n_cells,1);
n_alg = zeros(n_cells,1);
start_x_index = 1;
start_xp_index = 1;
% For each cell, allcoate memory to store external functions used to
% estimate the SOC.
SOC_estimate = cell(n_cells,1);
% Perform several checks over the cells
for i=1:n_cells
% Check the daeFormulation flag in case startSimulation is called
if(param{i}.daeFormulation~=1)
error(['Make sure that the daeFormulation flag is set to 1 for each cell parameters structure. Cell ', num2str(i),' does not respect this constraint.'])
end
% When Fick's law of diffusion is used, at least 10 discretization
% points are required. Raise an error if this condition is not met.
if((param{i}.Nr_p<10 || param{i}.Nr_n<10) && param{i}.SolidPhaseDiffusion==3)
error('The number of discrete points for the particles must be at least 10 in both cathode and anode.')
end
% Check if the SOC estimation function handle have been set. In case that
% the function handle has not been defined or it does not have the right
% number of input arguments, then return empty values.
if(isempty(param{i}.SOC_estimation_function) || nargin(param{i}.SOC_estimation_function)~=6)
SOC_estimate{i} = @(a,b,c,d,e,f,g,h,i,j,k)[];
else
SOC_estimate{i} = @SOCestimation;
end
param{i}.Nsum = param{i}.Np + param{i}.Ns + param{i}.Nn;
param{i}.Nsum_nos = param{i}.Np + param{i}.Nn;
% Define the discretization steps.
param{i}.deltax_al = 1 / param{i}.Nal;
param{i}.deltax_p = 1 / param{i}.Np;
param{i}.deltax_s = 1 / param{i}.Ns;
param{i}.deltax_n = 1 / param{i}.Nn;
param{i}.deltax_cu = 1 / param{i}.Ncu;
% Compute the indices used to store the positions of the differential
% and algebraic variables.
param{i} = computeVariablesIndices(param{i});
% Preallocate the differentiation matrices used for the solid phase
% potential. This can be done here because such matrices are considered
% to be time invariant.
param{i} = solidPhaseDifferentiationMatrices(param{i});
% Initialize Param.I_density or Param.P_density, using the value of the current density/power density (set in lines of code a few lines above
if param{1}.OperatingMode==1 || param{1}.OperatingMode==4
param{i}.I_density = 0;%param{1}.getCurrentDensity(0,t0,tf,x,param,param{1}.extraData);
elseif param{1}.OperatingMode==2 || param{1}.OperatingMode==5
param{i}.P_density = 0;%param{1}.getPowerDensity(0,t0,tf,x,param,param{1}.extraData);
else
param{i}.I_density = 0; % this is a dummy value
param{i}.P_density = 0;
end
% Preallocate the differentiation matrices used for the solid phase
% diffusion in case of Fick's law.
param{i} = solidPhaseDiffusionDifferentiationMatrices(param{i});
% Get the number of unknowns for the differential states
[~, ~, ~, ~, ~, n_diff(i)] = differentialInitialConditions(param{i});
% Get the number of unknowns for the algebraic states
[~, n_alg(i), ~] = initialise_model(param{i});
% Store the number of differential and algebraic variables for each cell.
param{i}.ndiff = n_diff(i);
param{i}.nalg = n_alg(i);
% The x_index variable will be used in the battery model file
% for indexing purposes.
param{i}.x_index = (start_x_index:n_diff(i)+n_alg(i)+start_x_index-1);
param{i}.xp_index = (start_xp_index:n_diff(i)+start_xp_index-1);
% Update the starting x_index value for the (possible) next cell
start_x_index = n_diff(i)+n_alg(i)+start_x_index;
start_xp_index = n_diff(i)+n_alg(i)+start_xp_index;
end
for i=1:n_cells
if((Y0_existence==0) && (YP0_existence==0))
% Get the initial conditions for the differential states of the i-th cell
[cs_average_init, ce_init, T_init, film_init, Q_init] = differentialInitialConditions(param{i});
% Solve the algebraic equations to find a set of semi-consistent initial
% conditions for the algebraic equations. This will help the DAE solver as a warm startup.
init_point = initialise_model(param{i});
% Build the initial values array for the integrator
Yt0 = [ce_init;cs_average_init;T_init;film_init;Q_init;init_point];
Y0 = [Y0;Yt0];
YP0 = [YP0;zeros(size(Yt0))];
end
end
if(n_cells==1)
nc = ' cell';
else
nc = ' cells';
end
% Empty the used arrays
ce_t = cell(n_cells,1);
cs_bar_t = cell(n_cells,1);
T_t = cell(n_cells,1);
jflux_t = cell(n_cells,1);
Phis_t = cell(n_cells,1);
Phie_t = cell(n_cells,1);
cs_star_t = cell(n_cells,1);
t_tot = cell(n_cells,1);
Qrev_t = cell(n_cells,1);
Qrxn_t = cell(n_cells,1);
Qohm_t = cell(n_cells,1);
SOC_t = cell(n_cells,1);
Voltage_t = cell(n_cells,1);
SOC_estimated_t = cell(n_cells,1);
film_t = cell(n_cells,1);
js_t = cell(n_cells,1);
R_int_t = cell(n_cells,1);
curr_density_t = cell(n_cells,1);
Up_t = cell(n_cells,1);
Un_t = cell(n_cells,1);
etap_t = cell(n_cells,1);
etan_t = cell(n_cells,1);
dudtp_t = cell(n_cells,1);
dudtn_t = cell(n_cells,1);
Q_t = cell(n_cells,1);
yp_original = YP0';
% This flag is used to notify the reason of the simulation stop. If 0
% everything went well.
exit_reason = 0;
% Define the structure to be passed to the residual function
ida_user_data.param = param;
ida_user_data.t0 = t0;
ida_user_data.tf = tf;
% Define algebraic and differential variables.
% id:1-> differential variables,
% id:0-> algebraic variables.
id = [];
constraint_vector=[];
for i=1:n_cells
id = [id;ones(n_diff(i),1);zeros(n_alg(i),1)];
temp_constraint_vector = zeros(n_diff(i)+n_alg(i),1);
temp_constraint_vector(param{i}.Phis_indices) = 1; % enforce positivity on solid phase potential in all nodes
constraint_vector = [constraint_vector;temp_constraint_vector];
end
JacFun = [];
% This statement checks if the user wants to make use of the Jacobian
% matrix and (if yes) it has been already provided or not as part of the parameters structure.
if(param{1}.UseJacobian==1 && isempty(param{1}.JacobianFunction))
% If the user wants to make use of the Jacobian, but it was not
% provided in the parameters structure, then evaluate a new Jacobian.
disp('Evaluating the analytical form of the Jacobian matrix. Please wait...')
% Import casadi framework
import casadi.*
% Define the symbolic variables.
xsym = SX.sym('x',[sum(n_diff)+sum(n_alg),1]);
xpsym = SX.sym('xp',[sum(n_diff)+sum(n_alg),1]);
cj = SX.sym('cj',1);
% Get the model equations written in an implicit form in a symbolic way.
[dx_tot, ~, ~] = batteryModel(0,xsym,xpsym,ida_user_data);
% Evaluate the Jacobian matrix. (Please refer to the Sundials guide for
% further information about the Jacobian structure).
J = jacobian(dx_tot,xsym) + cj*jacobian(dx_tot,xpsym);
% Define a function for the Jacobian evaluation for a given set of
% differential and algebraic variables.
JacFun = Function('fJ',{xsym,cj},{J});
% Store the function into a structure such that IDA will use it for the
% evaluation of the Jacobian matrix (see jacobianFunction.m in simulator_tools).
ida_user_data.fJ = JacFun;
% Define the options for Sundials
options = IDASetOptions('RelTol', opt.RelTol,...
'AbsTol' , opt.AbsTol,...
'MaxNumSteps' , 1500,...
'VariableTypes' , id,...
'UserData' , ida_user_data,...
'JacobianFn' , @jacobianFunction,...
'ConstraintTypes', constraint_vector);
elseif(param{1}.UseJacobian==1 && ~isempty(param{1}.JacobianFunction))
% If the Jacobian needs to be used and it has also been provided in the
% parameters structure, use it directly.
disp('Analytical function of the Jacobian matrix provided by the user.')
% If the Jacobian has been provided from the user, use it.
JacFun = param{1}.JacobianFunction;
% Pass this function pointer to the routine that IDA will call for the
% evaluation of the Jacobian values.
ida_user_data.fJ = JacFun;
% Define the options for Sundials
options = IDASetOptions('RelTol', opt.RelTol,...
'AbsTol' , opt.AbsTol,...
'MaxNumSteps' , 1500,...
'VariableTypes' , id,...
'UserData' , ida_user_data,...
'JacobianFn' , @jacobianFunction,...
'ConstraintTypes', constraint_vector);
else
% In this case the user does not want to make use of the Jacobian
% matrix. A numerical approximation will be calculated instead.
% Define the options for Sundials
options = IDASetOptions('RelTol', opt.RelTol,...
'AbsTol' , opt.AbsTol,...
'MaxNumSteps' , 1500,...
'VariableTypes' , id,...
'UserData' , ida_user_data,...
'ConstraintTypes', constraint_vector);
end
% Enable the capability to deal with piecewise inputs only when custom
% current profiles are used
if(param{1}.OperatingMode == 4)
% Add to IDA options structure the pointer to the function used to
% identify the presence of events (in this particular case
% discontinuities in the applied input currents)
options.RootsFn = @rootFinder;
options.NumRoots = 1;
end
% Initialise solver
IDAInit(@batteryModel,t0,Y0,YP0,options);
if param{i}.Scope == 1
disp(['Finding a set of consistent ICs for ',num2str(n_cells),nc,' battery pack. Please wait..'])
end
% Find consistent initial conditions
[~, yy, ~] = IDACalcIC(t0+10,'FindAlgebraic');
% Init the starting integration time
t = t0;
% Store in the results the initial states values.
y = yy';
% Store the total number of complete set of states
y_tot = y;
[ce_t,cs_bar_t,T_t,jflux_t,Phis_t, Phie_t, cs_star_t, SOC_t, film_t, js_t,Up_t,Un_t,R_int_t,curr_density_t,Voltage_t,SOC_estimated_t,Qrev_t,Qrxn_t,Qohm_t,Q_t,~,dudtp_t, dudtn_t,t_tot] =...
storeSimulationResults(n_cells,ce_t,cs_bar_t,T_t,jflux_t,Phis_t, Phie_t, cs_star_t, SOC_t, film_t, js_t,curr_density_t,Voltage_t,SOC_estimated_t,Up_t,Un_t,R_int_t,Qrev_t,Qrxn_t,Qohm_t,Q_t,dudtp_t, dudtn_t, t_tot, y, t,SOC_estimate,t0,tf, param);
sim_time = 0; % Simulation time (i.e. wall) for reporting purposes only. Not used in controlling solver or time-loop
% Loop until the integration time reaches tf.
while(t<tf)
% Check if simulation stop conditions are met or not
exit_reason = checkSimulationStopConditions(n_cells, Phis_t, cs_bar_t, T_t, param);
% If a stop condition is reached, stop the simulation
if(exit_reason~=0)
break;
end
%% Solve the set of DAEs
% The solver IDA is used to solve the resulting set of DAEs. Please
% refer to IDA manual for more information about syntax and its usage.
tic
[status, t, y] = IDASolve(tf,'OneStep');
% If status > 0 it means that roots have been found during the
% resolution of the equations
if(status>0)
% In case of custom current profiles, the roots are determined by
% the presence of a discontinuity in the applied current density
if(param{1}.OperatingMode==4)
% Define a new time instant at which re-initialize the solver
% using the last known values of the states
t = t*(1+1e-5);
IDAReInit(t,y,0*y,options);
% Find consistent initial conditions starting from the new
% point and keep on integrating
[~, y, yp] = IDACalcIC(t+10,'FindAlgebraic');
else
error(e.message);
end
end
sim_time = sim_time+toc;
y = y';
% Store the matrix containing all the states at all the integration
% time steps.
y_tot = [y_tot;y];
if(status==0)
% Store derivative info at each time step
yp_original = [yp_original;IDAGet('DerivSolution',t,1)'];
else
yp_original = [yp_original;yp'];
end
[ce_t,cs_bar_t,T_t,jflux_t,Phis_t, Phie_t, cs_star_t, SOC_t, film_t, js_t,Up_t,Un_t,R_int_t,curr_density_t,Voltage_t,SOC_estimated_t,Qrev_t,Qrxn_t,Qohm_t,Q_t,tot_voltage,dudtp_t, dudtn_t,t_tot] =...
storeSimulationResults(n_cells,ce_t,cs_bar_t,T_t,jflux_t,Phis_t, Phie_t, cs_star_t, SOC_t, film_t, js_t,curr_density_t,Voltage_t,SOC_estimated_t,Up_t,Un_t,R_int_t,Qrev_t,Qrxn_t,Qohm_t,Q_t,dudtp_t, dudtn_t, t_tot, y, t,SOC_estimate,t0,tf, param);
% If the output scope is active, show additional information to the user
if(param{1}.Scope==1)
if(n_cells==1)
temperature = T_t{1}(end,end);
% If Fick's law of diffusion is used, before to evaluate the
% SOC, it is necessary to compute the average solid
% concentration in each particle.
Sout = internalSOCestimate(cs_bar_t,param,1);
clc
fprintf(['No. of cells in the pack \t',num2str(n_cells),'\n']);
fprintf(['Time \t\t\t\t\t',num2str(t),' s\n']);
% If potentiostatic mode is running, applied current comes as
% solution of DAEs. Otherwise it is provided by the user.
if(param{1}.OperatingMode==1) || (param{1}.OperatingMode==4)
fprintf(['Applied current density \t\t',num2str(y(end)),' A/m^2\n']);
elseif (param{1}.OperatingMode==2) || (param{1}.OperatingMode==5)
fprintf(['Applied power density \t\t',num2str(param{1}.getPowerDensity(t,t0,tf,param{1}.extraData)),' W/m^2\n']);
end
switch param{1}.edge_values
% Linear interpolation
case 2
output_voltage = (1.5*Phis_t{1}(end,1)-0.5*Phis_t{1}(end,2)) - (1.5*Phis_t{1}(end,end) - 0.5*Phis_t{1}(end,end-1));
% Value at the centroid
otherwise
output_voltage = Phis_t{1}(end,1) - Phis_t{1}(end,end);
end
fprintf(['Voltage \t\t\t\t', num2str(output_voltage), ' V\n']);
fprintf(['Temperature \t\t\t', num2str(temperature), ' K\n']);
fprintf(['SOC \t\t\t\t\t', num2str(Sout), ' %% \n']);
fprintf(['Cutoff Voltage \t\t\t', num2str(param{1}.CutoffVoltage), ' V\n']);
fprintf(['Cutover Voltage \t\t', num2str(param{1}.CutoverVoltage), ' V\n']);
fprintf(['Internal Resistance \t', num2str(R_int_t{1}(end)), ' Ohm m^2\n']);
fprintf(['Absolute tolerance \t\t', num2str(param{1}.AbsTol), '\n']);
fprintf(['Relative tolerance \t\t', num2str(param{1}.RelTol), '\n']);
fprintf(['Initial int. time \t\t', num2str(t0), ' s\n']);
fprintf(['Final int. time \t\t', num2str(tf), ' s\n']);
fprintf(['N. of unknowns \t\t\t', num2str(length(y)), ' \n']);
else
clc
fprintf(['No. of cells in the pack \t',num2str(n_cells),'\n']);
fprintf(['Time \t\t\t\t\t',num2str(t),' s\n']);
% If potentiostatic mode is running, applied current comes as
% solution of DAEs. Otherwise it is provided by the user.
if(param{1}.OperatingMode==1) || (param{1}.OperatingMode==4)
fprintf(['Applied current density \t\t',num2str(y(end)),' A/m^2\n']);
elseif (param{1}.OperatingMode==2) || (param{1}.OperatingMode==5)
fprintf(['Applied power density \t\t',num2str(param{1}.getPowerDensity(t,t0,tf,param{1}.extraData)),' W/m^2\n']);
end
fprintf(['Voltage \t\t\t\t', num2str(tot_voltage), ' V\n']);
fprintf(['Absolute tolerance \t\t', num2str(param{1}.AbsTol), ' \n']);
fprintf(['Relative tolerance \t\t', num2str(param{1}.RelTol), ' \n']);
fprintf(['Initial int. time \t\t', num2str(t0), ' s\n']);
fprintf(['Final int. time \t\t', num2str(tf), ' s\n']);
fprintf(['N. of unknowns \t\t\t', num2str(length(y)), ' \n']);
end
end
end
disp(['Elasped time: ',num2str(sim_time),' s']);
% Interpolate for fixed time step values
t_tot_original = t_tot;
% Build the time vector used for interpolation
time_vector = (t0:param{i}.sim_datalog_interval:tf);
% In case of the simulation has stopped before the final time set by the
% user, change the tf variable in order to interpolate only available values.
if(t<tf)
% Set final time equal to the last integration step
tf = t;
% Redefine the time vector used for interpolation
time_vector = (t0:param{i}.sim_datalog_interval:tf);
end
% If at least one integration step has been done, retreive the first order
% time derivative information. Otherwise use the initial data.
if(time_vector(end)>t0)
% Retreive derivative information at the last time step
yp = interp1(t_tot{i},yp_original,time_vector(end))';
else
% If the integration step carried out by SUNDIALS is less than the
% parametrized step size, then return the initial data as set of initial states.
yp = YP0;
yp_original = YP0;
end
% Free memory allocated by IDA solver
IDAFree
% These variables will be used to store the original results of the integration process.
Phis_t_o = cell(n_cells,1);
Phie_t_o = cell(n_cells,1);
ce_t_o = cell(n_cells,1);
cs_star_t_o = cell(n_cells,1);
cs_average_t_o = cell(n_cells,1);
jflux_t_o = cell(n_cells,1);
SOC_t_o = cell(n_cells,1);
T_t_o = cell(n_cells,1);
Voltage_t_o = cell(n_cells,1);
SOC_estimated_t_o = cell(n_cells,1);
film_t_o = cell(n_cells,1);
js_t_o = cell(n_cells,1);
R_int_t_o = cell(n_cells,1);
Up_t_o = cell(n_cells,1);
Un_t_o = cell(n_cells,1);
dudtp_t_o = cell(n_cells,1);
dudtn_t_o = cell(n_cells,1);
Qrev_t_o = cell(n_cells,1);
Qrxn_t_o = cell(n_cells,1);
Qohm_t_o = cell(n_cells,1);
etap_t_o = cell(n_cells,1);
etan_t_o = cell(n_cells,1);
app_current_t_o = cell(n_cells,1);
Q_t_o = cell(n_cells,1);
y = [];
y_original = [];
for i=1:n_cells
% Save the overpotentials
etap_t{i} = Phis_t{i}(:,1:param{i}.Np)-Phie_t{i}(:,1:param{i}.Np)-Up_t{i};
if(param{i}.EnableAgeing==1)
etan_t{i} = Phis_t{i}(:,param{i}.Np+1:end)-Phie_t{i}(:,param{i}.Np+param{i}.Ns+1:end)-Un_t{i} - param{1}.F*jflux_t{i}(:,param{i}.Np+1:end).*(param{i}.R_SEI+film_t{i}./param{i}.k_n_aging);
else
etan_t{i} = Phis_t{i}(:,param{i}.Np+1:end)-Phie_t{i}(:,param{i}.Np+param{i}.Ns+1:end)-Un_t{i};
end
if(param{i}.sim_datalog_interval>0)
% Store original results
Phis_t_o{i} = Phis_t{i};
Phie_t_o{i} = Phie_t{i};
ce_t_o{i} = ce_t{i};
cs_star_t_o{i} = cs_star_t{i};
cs_average_t_o{i} = cs_bar_t{i};
jflux_t_o{i} = jflux_t{i};
SOC_t_o{i} = SOC_t{i};
T_t_o{i} = T_t{i};
Voltage_t_o{i} = Voltage_t{i};
SOC_estimated_t_o{i} = SOC_estimated_t{i};
film_t_o{i} = film_t{i};
js_t_o{i} = js_t{i};
R_int_t_o{i} = R_int_t{i};
app_current_t_o{i} = curr_density_t{i};
Up_t_o{i} = Up_t{i};
Un_t_o{i} = Un_t{i};
dudtp_t_o{i} = dudtp_t{i};
dudtn_t_o{i} = dudtn_t{i};
etap_t_o{i} = etap_t{i};
etan_t_o{i} = etan_t{i};
Qrev_t_o{i} = Qrev_t{i};
Qrxn_t_o{i} = Qrxn_t{i};
Qohm_t_o{i} = Qohm_t{i};
Q_t_o{i} = Q_t{i};
if(time_vector(end)>t0)
% Interpolate the results
Phis_t{i} = interp1(t_tot{i},Phis_t{i},time_vector');
Phie_t{i} = interp1(t_tot{i},Phie_t{i},time_vector');
ce_t{i} = interp1(t_tot{i},ce_t{i},time_vector');
cs_star_t{i} = interp1(t_tot{i},cs_star_t{i},time_vector');
cs_bar_t{i} = interp1(t_tot{i},cs_bar_t{i},time_vector');
jflux_t{i} = interp1(t_tot{i},jflux_t{i},time_vector');
SOC_t{i} = interp1(t_tot{i},SOC_t{i},time_vector');
SOC_estimated_t{i} = interp1(t_tot{i},SOC_estimated_t{i},time_vector');
Voltage_t{i} = interp1(t_tot{i},Voltage_t{i},time_vector');
film_t{i} = interp1(t_tot{i},film_t{i},time_vector');
js_t{i} = interp1(t_tot{i},js_t{i},time_vector');
R_int_t{i} = interp1(t_tot{i},R_int_t{i},time_vector');
T_t{i} = interp1(t_tot{i},T_t{i},time_vector');
curr_density_t{i} = interp1(t_tot{i},curr_density_t{i},time_vector');
Up_t{i} = interp1(t_tot{i},Up_t{i},time_vector');
Un_t{i} = interp1(t_tot{i},Un_t{i},time_vector');
Qrev_t{i} = interp1(t_tot{i},Qrev_t{i},time_vector');
Qrxn_t{i} = interp1(t_tot{i},Qrxn_t{i},time_vector');
Qohm_t{i} = interp1(t_tot{i},Qohm_t{i},time_vector');
etap_t{i} = interp1(t_tot{i},etap_t{i},time_vector');
etan_t{i} = interp1(t_tot{i},etan_t{i},time_vector');
dudtp_t{i} = interp1(t_tot{i},dudtp_t{i},time_vector');
dudtn_t{i} = interp1(t_tot{i},dudtn_t{i},time_vector');
Q_t{i} = interp1(t_tot{i},Q_t{i},time_vector');
t_tot{i} = time_vector';
end
end
% Store results. If integration steps are enabled, store the interpolated data.
results.Phis{i} = Phis_t{i};
results.Phie{i} = Phie_t{i};
results.ce{i} = ce_t{i};
results.cs_surface{i} = cs_star_t{i};
results.cs_average{i} = cs_bar_t{i};
results.time{i} = t_tot{i};
results.int_internal_time{i} = t_tot_original{i};
results.ionic_flux{i} = jflux_t{i};
results.side_reaction_flux{i} = js_t{i};
results.SOC{i} = SOC_t{i};
results.SOC_estimated{i} = SOC_estimated_t{i};
results.Voltage{i} = Voltage_t{i};
results.Temperature{i} = T_t{i};
results.Qrev{i} = Qrev_t{i};
results.Qrxn{i} = Qrxn_t{i};
results.Qohm{i} = Qohm_t{i};
results.film{i} = film_t{i};
results.R_int{i} = R_int_t{i};
results.Up{i} = Up_t{i};
results.Un{i} = Un_t{i};
results.etap{i} = etap_t{i};
results.etan{i} = etan_t{i};
results.dudtp{i} = dudtp_t{i};
results.dudtn{i} = dudtn_t{i};
results.Q{i} = Q_t{i};
results.parameters{i} = param{i};
results.JacobianFun = JacFun;
% Store original data.
results.original.Phis{i} = Phis_t_o{i};
results.original.Phie{i} = Phie_t_o{i};
results.original.ce{i} = ce_t_o{i};
results.original.cs_surface{i} = cs_star_t_o{i};
results.original.cs_average{i} = cs_average_t_o{i};
results.original.ionic_flux{i} = jflux_t_o{i};
results.original.side_reaction_flux{i} = js_t_o{i};
results.original.SOC{i} = SOC_t_o{i};
results.original.SOC_estimated{i} = SOC_estimated_t_o{i};
results.original.Voltage{i} = Voltage_t_o{i};
results.original.Temperature{i} = T_t_o{i};
results.original.film{i} = film_t_o{i};
results.original.R_int{i} = R_int_t_o{i};
results.original.Up{i} = Up_t_o{i};
results.original.Un{i} = Un_t_o{i};
results.original.etap{i} = etap_t_o{i};
results.original.etan{i} = etan_t_o{i};
results.original.Q{i} = Q_t_o{i};
results.original.parameters{i} = param_original{i};
% Store initial states data
y = [y;ce_t{i}(end,:)';cs_bar_t{i}(end,:)';T_t{i}(end,:)';film_t{i}(end,:)';Q_t{i}(end,:)';jflux_t{i}(end,:)';Phis_t{i}(end,:)';Phie_t{i}(end,:)';js_t{i}(end,:)';curr_density_t{i}(end)];
% Store initial states original data
y_original = [y_original;ce_t_o{i}(end,:)';cs_average_t_o{i}(end,:)';T_t_o{i}(end,:)';film_t_o{i}(end,:)';Q_t_o{i}(end,:)';jflux_t_o{i}(end,:)';Phis_t_o{i}(end,:)';Phie_t_o{i}(end,:)';js_t_o{i}(end,:)';app_current_t_o{i}(end)];
end
% Store the array of last results
results.Y = y;
results.YP = yp;
results.original.Y = y_tot;
results.original.YP = yp_original;
results.original.initialState.Y = y_original;
results.original.initialState.YP = yp_original(end,:);
results.initialState.Y = y;
results.initialState.YP = yp;
% Store simulation time
results.simulation_time = sim_time;
% Exit reason
results.exit_reason = exit_reason;
% Check the operating mode and store the results accordingly.
if(param{1}.OperatingMode==2)
results.power_density = param{1}.P_density * ones(size(t_tot{1},1),1);
results.original.power_density = param{1}.P_density * ones(size(t_tot_original{1},1),1);
% Variable current profile
elseif(param{1}.OperatingMode==5)
results.power_density = param{1}.getPowerDensity(t_tot{1},t0,tf,param{1}.extraData);
results.original.power_density = param{1}.getPowerDensity(t_tot_original{1},t0,tf,param{1}.extraData);
end
results.curr_density = curr_density_t{1};
results.original.curr_density = app_current_t_o{1};
end
function estimate = SOCestimation(t,t0,tf,param,ce_t,cs_bar_t,cs_star_t,Phie_t,Phis_t,jflux_t,T_t)
% Build the states struct which will be passed to the function
states.ce = ce_t(end,:);
states.cs_average = cs_bar_t(end,:);
states.cs_surface = cs_star_t(end,:);
states.Phie = Phie_t(end,:);
states.Phis = Phis_t(end,:);
states.ionic_flux = jflux_t(end,:);
states.Temperature = T_t(end,:);
% Call the estimation procedure
estimate = param.SOC_estimation_function(t,t0,tf,states,param.extraData,param);
end