-
Notifications
You must be signed in to change notification settings - Fork 99
/
Copy pathpredict_llama2.py
164 lines (138 loc) · 5.6 KB
/
predict_llama2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import argparse
import json, os
from tqdm import tqdm
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer
from transformers import GenerationConfig
from transformers import BitsAndBytesConfig
from transformers import set_seed
from peft import PeftModel
import sys
####args
parser = argparse.ArgumentParser()
parser.add_argument('--base_model', default=None, type=str, required=True)
parser.add_argument('--lora_model', default=None, type=str, help="If None, perform inference on the base model")
parser.add_argument('--tokenizer_path', default=None, type=str)
parser.add_argument('--data_path', default=None, type=str, help="A file that contains instructions (one instruction per line)")
parser.add_argument('--output_path', type=str, help='predict result, should be json-lines format')
parser.add_argument('--prompt_key', type=str, help='the key of prompts in the data file')
parser.add_argument('--target_key', type=str, help='the key of targets/labels in the data file')
parser.add_argument('--batch_size', type=int, help='batch size')
parser.add_argument('--max_new_tokens', type=int)
parser.add_argument('--seed', type=int, default=None)
parser.add_argument('--size', type=int, default=10000000)
args = parser.parse_args()
if args.seed is not None:
set_seed(args.seed)
print(f"---------seed {args.seed}----------")
##————————————————————————————
###data
prompts, targets = [], []
with open(args.data_path, 'r') as f:
lines = f.readlines()
ds = [json.loads(line) for line in lines[:args.size]]
for d in ds:
prompts.append(d[args.prompt_key])
targets.append(d[args.target_key])
####加载模型
load_type = torch.float16
if torch.cuda.is_available():
device = torch.device(0)
else:
device = torch.device('cpu')
args.tokenizer_path = args.base_model
tokenizer = LlamaTokenizer.from_pretrained(args.tokenizer_path, legacy=True)
# tokenizer.pad_token = tokenizer.unk_token
tokenizer.pad_token = tokenizer.bos_token
base_model = LlamaForCausalLM.from_pretrained(
args.base_model,
torch_dtype=load_type,
device_map='auto',
).bfloat16()
model_vocab_size = base_model.get_input_embeddings().weight.size(0)
tokenizer_vocab_size = len(tokenizer)
print(f"Vocab of the base model: {model_vocab_size}")
print(f"Vocab of the tokenizer: {tokenizer_vocab_size}")
if model_vocab_size!=tokenizer_vocab_size:
print("Resize model embeddings to fit tokenizer")
base_model.resize_token_embeddings(tokenizer_vocab_size)
if args.lora_model is not None:
print("loading peft model")
model = PeftModel.from_pretrained(base_model, args.lora_model,torch_dtype=load_type,device_map='auto',).bfloat16()
else:
model = base_model
if device==torch.device('cpu'):
model.float()
model.eval()
####generation
generation_config = GenerationConfig(
temperature=0.2,
top_k=40,
top_p=0.9,
do_sample=False,
# num_beams=1,
repetition_penalty=1.1,
max_new_tokens=args.max_new_tokens
)
def predict(prompts):
if isinstance(prompts, str):
prompts = [prompts]
assert isinstance(prompts, list), 'input should be list of text'
# # 不加其他参数,不设置 padding,不设置 return pt。这样可以使得每条都保留自己的长度
# inputs = tokenizer(prompts, max_length=1024, truncation=True)
# 再来一次带 padding 的 tokenization
tokenizer.padding_side = 'left'
#inputs = tokenizer(prompts,return_tensors="pt")#@@@@@ #add_special_tokens=False ?
input_tensors = tokenizer(prompts, max_length=1024, padding=True, truncation=True, return_tensors='pt')
prompt_length = input_tensors.input_ids.shape[1]
input_tensors.to('cuda:0')
######llama
#print('tokenizer.eos_token_id:',tokenizer.eos_token_id)
#print('tokenizer.pad_token_id:',tokenizer.pad_token_id)
outputs = model.generate(
input_ids = input_tensors["input_ids"].to(device),
attention_mask = input_tensors['attention_mask'].to(device),
#eos_token_id=(2, 103028),
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
generation_config = generation_config
)
#########
# 过滤掉 prompt 部分
real_outputs = []
for i,output in enumerate(outputs):
output = output[prompt_length:]
real_outputs.append(output)
results = tokenizer.batch_decode(real_outputs, skip_special_tokens=True)
return results
# 批量预测
print('start predict:'+args.output_path)
bs = args.batch_size
predicted_results = []
for i in tqdm(range(len(prompts)//bs + 1)):
# for i in tqdm(range(50)):
batch = prompts[i * bs : (i+1) * bs]
if batch:
batch_results= predict(batch)
predicted_results.extend(batch_results)
# 打印着看看
for prompt, each in zip(batch[:2], batch_results[:2]):
print('\n======prompt======')
print(prompt)
print(' prediction===>')
print(each)
#name = args.lora_path.split('/')[-1]#@@@@@@lora
#name = args.data_path.split('/')[-1].strip('.json')
os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
with open(args.output_path, 'w', encoding='utf8') as f:
#with open(f'data/eval/{name}_predictions.json', 'w', encoding='utf8') as f:
for prompt, target, prediction in zip(prompts, targets, predicted_results):
line = {
'prompt': prompt,
'target': target,
'prediction': prediction
}
line = json.dumps(line, ensure_ascii=False)
f.write(line)
f.write('\n')
print('prediction file saved at:'+args.output_path)