You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Using pad_token, but it is not set yet.
Loading base model for ppo training...
加载base
加载lora
加载ppo
WARNING:root:A <class 'peft.peft_model.PeftModelForCausalLM'> model is loaded from '/root/autodl-tmp/LLM/weights/sft_lora', and no v_head weight is found. This IS expected if you are not resuming PPO training.
Loading base model for reward model...
The argument trust_remote_code is to be used with Auto classes. It has no effect here and is ignored.
Some weights of BaichuanForSequenceClassification were not initialized from the model checkpoint at baichuan-inc/baichuan-7B and are newly initialized: ['score.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
开始训练
0it [00:00, ?it/s]---------------------
CUDA error: device-side assert triggered
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Compile with TORCH_USE_CUDA_DSA to enable device-side assertions.
0
0it [00:10, ?it/s]
Traceback (most recent call last):
File "rl_training.py", line 331, in
response_tensors = ppo_trainer.generate(
File "/root/miniconda3/lib/python3.8/site-packages/trl/trainer/ppo_trainer.py", line 446, in generate
return self._generate_batched(
File "/root/miniconda3/lib/python3.8/site-packages/trl/trainer/ppo_trainer.py", line 503, in _generate_batched
generations = self.accelerator.unwrap_model(self.model).generate(**padded_inputs, **generation_kwargs)
File "/root/miniconda3/lib/python3.8/site-packages/trl/models/modeling_value_head.py", line 198, in generate
return self.pretrained_model.generate(*args, **kwargs)
File "/root/miniconda3/lib/python3.8/site-packages/peft/peft_model.py", line 975, in generate
outputs = self.base_model.generate(**kwargs)
File "/root/miniconda3/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/root/miniconda3/lib/python3.8/site-packages/transformers/generation/utils.py", line 1648, in generate
return self.sample(
File "/root/miniconda3/lib/python3.8/site-packages/transformers/generation/utils.py", line 2730, in sample
outputs = self(
File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/hooks.py", line 166, in new_forward
return module._hf_hook.post_forward(module, output)
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/hooks.py", line 305, in post_forward
output = send_to_device(output, self.input_device, skip_keys=self.skip_keys)
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/utils/operations.py", line 160, in send_to_device
{
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/utils/operations.py", line 161, in
k: t if k in skip_keys else send_to_device(t, device, non_blocking=non_blocking, skip_keys=skip_keys)
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/utils/operations.py", line 151, in send_to_device
return honor_type(
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/utils/operations.py", line 83, in honor_type
return type(obj)(generator)
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/utils/operations.py", line 152, in
tensor, (send_to_device(t, device, non_blocking=non_blocking, skip_keys=skip_keys) for t in tensor)
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/utils/operations.py", line 151, in send_to_device
return honor_type(
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/utils/operations.py", line 83, in honor_type
return type(obj)(generator)
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/utils/operations.py", line 152, in
tensor, (send_to_device(t, device, non_blocking=non_blocking, skip_keys=skip_keys) for t in tensor)
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/utils/operations.py", line 167, in send_to_device
return tensor.to(device, non_blocking=non_blocking)
RuntimeError: CUDA error: device-side assert triggered
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Compile with TORCH_USE_CUDA_DSA to enable device-side assertions.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "rl_training.py", line 364, in
print(question_tensors)
File "/root/miniconda3/lib/python3.8/site-packages/torch/_tensor.py", line 426, in repr
return torch._tensor_str._str(self, tensor_contents=tensor_contents)
File "/root/miniconda3/lib/python3.8/site-packages/torch/_tensor_str.py", line 636, in _str
return _str_intern(self, tensor_contents=tensor_contents)
File "/root/miniconda3/lib/python3.8/site-packages/torch/_tensor_str.py", line 567, in _str_intern
tensor_str = _tensor_str(self, indent)
File "/root/miniconda3/lib/python3.8/site-packages/torch/_tensor_str.py", line 327, in _tensor_str
formatter = _Formatter(get_summarized_data(self) if summarize else self)
File "/root/miniconda3/lib/python3.8/site-packages/torch/_tensor_str.py", line 111, in init
value_str = "{}".format(value)
File "/root/miniconda3/lib/python3.8/site-packages/torch/_tensor.py", line 872, in format
return self.item().format(format_spec)
RuntimeError: CUDA error: device-side assert triggered
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Compile with TORCH_USE_CUDA_DSA to enable device-side assertions.
The text was updated successfully, but these errors were encountered:
Using pad_token, but it is not set yet.
Loading base model for ppo training...
加载base
加载lora
加载ppo
WARNING:root:A <class 'peft.peft_model.PeftModelForCausalLM'> model is loaded from '/root/autodl-tmp/LLM/weights/sft_lora', and no v_head weight is found. This IS expected if you are not resuming PPO training.
Loading base model for reward model...
The argument
trust_remote_code
is to be used with Auto classes. It has no effect here and is ignored.Some weights of BaichuanForSequenceClassification were not initialized from the model checkpoint at baichuan-inc/baichuan-7B and are newly initialized: ['score.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
开始训练
0it [00:00, ?it/s]---------------------
CUDA error: device-side assert triggered
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Compile with
TORCH_USE_CUDA_DSA
to enable device-side assertions.0
0it [00:10, ?it/s]
Traceback (most recent call last):
File "rl_training.py", line 331, in
response_tensors = ppo_trainer.generate(
File "/root/miniconda3/lib/python3.8/site-packages/trl/trainer/ppo_trainer.py", line 446, in generate
return self._generate_batched(
File "/root/miniconda3/lib/python3.8/site-packages/trl/trainer/ppo_trainer.py", line 503, in _generate_batched
generations = self.accelerator.unwrap_model(self.model).generate(**padded_inputs, **generation_kwargs)
File "/root/miniconda3/lib/python3.8/site-packages/trl/models/modeling_value_head.py", line 198, in generate
return self.pretrained_model.generate(*args, **kwargs)
File "/root/miniconda3/lib/python3.8/site-packages/peft/peft_model.py", line 975, in generate
outputs = self.base_model.generate(**kwargs)
File "/root/miniconda3/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/root/miniconda3/lib/python3.8/site-packages/transformers/generation/utils.py", line 1648, in generate
return self.sample(
File "/root/miniconda3/lib/python3.8/site-packages/transformers/generation/utils.py", line 2730, in sample
outputs = self(
File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/hooks.py", line 166, in new_forward
return module._hf_hook.post_forward(module, output)
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/hooks.py", line 305, in post_forward
output = send_to_device(output, self.input_device, skip_keys=self.skip_keys)
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/utils/operations.py", line 160, in send_to_device
{
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/utils/operations.py", line 161, in
k: t if k in skip_keys else send_to_device(t, device, non_blocking=non_blocking, skip_keys=skip_keys)
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/utils/operations.py", line 151, in send_to_device
return honor_type(
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/utils/operations.py", line 83, in honor_type
return type(obj)(generator)
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/utils/operations.py", line 152, in
tensor, (send_to_device(t, device, non_blocking=non_blocking, skip_keys=skip_keys) for t in tensor)
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/utils/operations.py", line 151, in send_to_device
return honor_type(
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/utils/operations.py", line 83, in honor_type
return type(obj)(generator)
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/utils/operations.py", line 152, in
tensor, (send_to_device(t, device, non_blocking=non_blocking, skip_keys=skip_keys) for t in tensor)
File "/root/miniconda3/lib/python3.8/site-packages/accelerate/utils/operations.py", line 167, in send_to_device
return tensor.to(device, non_blocking=non_blocking)
RuntimeError: CUDA error: device-side assert triggered
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Compile with
TORCH_USE_CUDA_DSA
to enable device-side assertions.During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "rl_training.py", line 364, in
print(question_tensors)
File "/root/miniconda3/lib/python3.8/site-packages/torch/_tensor.py", line 426, in repr
return torch._tensor_str._str(self, tensor_contents=tensor_contents)
File "/root/miniconda3/lib/python3.8/site-packages/torch/_tensor_str.py", line 636, in _str
return _str_intern(self, tensor_contents=tensor_contents)
File "/root/miniconda3/lib/python3.8/site-packages/torch/_tensor_str.py", line 567, in _str_intern
tensor_str = _tensor_str(self, indent)
File "/root/miniconda3/lib/python3.8/site-packages/torch/_tensor_str.py", line 327, in _tensor_str
formatter = _Formatter(get_summarized_data(self) if summarize else self)
File "/root/miniconda3/lib/python3.8/site-packages/torch/_tensor_str.py", line 111, in init
value_str = "{}".format(value)
File "/root/miniconda3/lib/python3.8/site-packages/torch/_tensor.py", line 872, in format
return self.item().format(format_spec)
RuntimeError: CUDA error: device-side assert triggered
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Compile with
TORCH_USE_CUDA_DSA
to enable device-side assertions.The text was updated successfully, but these errors were encountered: