forked from Digiducer/matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
spectralcalc.m
96 lines (95 loc) · 4.02 KB
/
spectralcalc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
% Written by Jim Elliott for The Modal Shop, Inc.
% Modifications and documentation by Alex Lambert
function SpectrumObject = spectralcalc(timedata,offset,size,windowType)
% SpectrumObject = spectralcalc(timedata,offset,size)
% Inputs:
% timedata: The time history of amplitudes.
% offset: An offset, in sample counts, from the start of the timedata
% history. Useful if you would like to skip to a later section of the
% time data; e.g. for overlap processing. Indicates the first sample
% used; e.g. you never have an offset of 0 since you start with the
% 1st sample at minimum.
% size: The length of the time history, in sample counts, that you want
% to compute spectral information over. Make sure that the size
% accounts for your offset, if any, such that offset + size is not
% greater than the end of your timedata.
% window: A string specifying the window type. Valid types are:
% 'flat top','blackman-harris','hamming',and 'hann'. Feel free to
% add your own.
%
% Outputs:
% SpectrumObject: A structure containing computed information. Fields
% include:
% Time: The time history pruned from all data as selected by inputs
% offset and size
% Window: A string specifying the windowing type
% WindowedTime: The pruned time history with windowing applied.
% Magnitude: Ampliude corrected fft magnitudes.
% RMS: Amplitude corrected fft RMS values.
% Compute the end sample given offset and specified length
endv = offset+size;
% Grab the time data specified from the complete history
z1=timedata(offset:endv);
% Add the selected time history to the returned SpectrumObject
SpectrumObject.Time = z1;
%NBW => noise bandwidth
if ~exist('windowType','var') ||isempty('windowType')
windowType = 'flattop';
end
switch lower(windowType)
case 'flattop'
w = flattopwin(length(z1));%0.5*(1.0-cos((2.0*3.14159*(1:length(z1)))/length(z1)));
SpectrumObject.Window = 'Flat top';
NBW = 3.35;
case 'flat top'
w = flattopwin(length(z1));%0.5*(1.0-cos((2.0*3.14159*(1:length(z1)))/length(z1)));
SpectrumObject.Window = 'Flat top';
NBW = 3.35;
case 'blackman-harris'
w = blackmanharris(length(z1));
SpectrumObject.Window = 'Blackman-Harris';
NBW = 2.7932;
case 'blackmanharris'
w = blackmanharris(length(z1));
SpectrumObject.Window = 'Blackman-Harris';
NBW = 2.7932;
case 'hamming'
w = hamming(length(z1));
SpectrumObject.Window = 'Hamming';
NBW = 1.36;
case 'hamm' % does anyone call it this? just in case...
w = hamming(length(z1));
SpectrumObject.Window = 'Hamming';
NBW = 1.36;
case 'hann'
w = hann(length(z1));
SpectrumObject.Window = 'Hann';
NBW=1.5;
case 'hanning'
w = hann(length(z1));
SpectrumObject.Window = 'Hann';
NBW=1.5;
otherwise
% default to a flat top window
disp('Incorrect or no window specified. Defaulting to flat top.\nValid options are ''flat top'',''blackman-harris'',''hamming'',and ''hann''.');
w = flattopwin(length(z1));%0.5*(1.0-cos((2.0*3.14159*(1:length(z1)))/length(z1)));
SpectrumObject.Window = 'Flat top';
NBW = 3.35;
end
%ACORR = amplitude correction
% Works for all of them
ACORR = 1/mean(w);
% Apply window
z1 = z1.*w;
SpectrumObject.WindowedTime = z1;
% Matlab FFT is 2 sided un-normalized complex fft with no correction for Window
% Amplitude. To get 1 sided mag , Take 1st half , get magnitude and
% multiply by 2/N. Then multiply by window Amplitude correction.
zf = fft(z1);
SpectrumObject.FFTdata = 2*zf(1:floor(end/2));
SpectrumObject.AmpCorr = ACORR;
SpectrumObject.NoiseBW = NBW;
% Apply magnitude corrections
SpectrumObject.Magnitude = ACORR*(abs(zf(1:floor((length(z1)/2))))*2.0)/length(z1);
SpectrumObject.RMS = sqrt((1/(2.0*NBW))*sum(SpectrumObject.Magnitude.*SpectrumObject.Magnitude));
end