给定一个候选人编号的集合 candidates
和一个目标数 target
,找出 candidates
中所有可以使数字和为 target
的组合。
candidates
中的每个数字在每个组合中只能使用 一次 。
注意:解集不能包含重复的组合。
示例 1:
输入: candidates =[10,1,2,7,6,1,5]
, target =8
, 输出: [ [1,1,6], [1,2,5], [1,7], [2,6] ]
示例 2:
输入: candidates = [2,5,2,1,2], target = 5, 输出: [ [1,2,2], [5] ]
提示:
1 <= candidates.length <= 100
1 <= candidates[i] <= 50
1 <= target <= 30
方法一:排序 + 回溯
题目要求组合不能重复,我们可以先对数组进行排序,方便跳过重复的数字。
然后从左到右遍历数组,每次遍历到一个数,就将其加入到当前组合中,然后继续遍历下一个数,直到当前组合的和等于目标值,此时将当前组合加入到结果集中,然后回溯到上一层,继续遍历下一个数。
时间复杂度
class Solution:
def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
def dfs(i, s):
if s > target:
return
if s == target:
ans.append(t[:])
return
for j in range(i, len(candidates)):
if j > i and candidates[j] == candidates[j - 1]:
continue
t.append(candidates[j])
dfs(j + 1, s + candidates[j])
t.pop()
ans = []
candidates.sort()
t = []
dfs(0, 0)
return ans
class Solution {
private List<List<Integer>> ans = new ArrayList<>();
private List<Integer> t = new ArrayList<>();
private int[] candidates;
private int target;
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
Arrays.sort(candidates);
this.target = target;
this.candidates = candidates;
dfs(0, 0);
return ans;
}
private void dfs(int i, int s) {
if (s > target) {
return;
}
if (s == target) {
ans.add(new ArrayList<>(t));
return;
}
for (int j = i; j < candidates.length; ++j) {
if (j > i && candidates[j] == candidates[j - 1]) {
continue;
}
t.add(candidates[j]);
dfs(j + 1, s + candidates[j]);
t.remove(t.size() - 1);
}
}
}
class Solution {
public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
sort(candidates.begin(), candidates.end());
vector<vector<int>> ans;
vector<int> t;
function<void(int, int)> dfs = [&](int i, int s) {
if (s > target) return;
if (s == target) {
ans.emplace_back(t);
return;
}
for (int j = i; j < candidates.size(); ++j) {
if (j > i && candidates[j] == candidates[j - 1]) continue;
t.emplace_back(candidates[j]);
dfs(j + 1, s + candidates[j]);
t.pop_back();
}
};
dfs(0, 0);
return ans;
}
};
func combinationSum2(candidates []int, target int) (ans [][]int) {
sort.Ints(candidates)
t := []int{}
var dfs func(i, s int)
dfs = func(i, s int) {
if s > target {
return
}
if s == target {
cp := make([]int, len(t))
copy(cp, t)
ans = append(ans, cp)
return
}
for j := i; j < len(candidates); j++ {
if j > i && candidates[j] == candidates[j-1] {
continue
}
t = append(t, candidates[j])
dfs(j+1, s+candidates[j])
t = t[:len(t)-1]
}
}
dfs(0, 0)
return
}
/**
* @param {number[]} candidates
* @param {number} target
* @return {number[][]}
*/
var combinationSum2 = function (candidates, target) {
candidates.sort((a, b) => a - b);
const n = candidates.length;
const t = [];
const ans = [];
const dfs = (i, s) => {
if (s > target) {
return;
}
if (s === target) {
ans.push([...t]);
return;
}
for (let j = i; j < n; j++) {
const num = candidates[j];
if (j > i && num === candidates[j - 1]) {
continue;
}
t.push(num);
dfs(j + 1, s + num);
t.pop();
}
};
dfs(0, 0);
return ans;
};
function combinationSum2(candidates: number[], target: number): number[][] {
candidates.sort((a, b) => a - b);
const n = candidates.length;
const t: number[] = [];
const res: number[][] = [];
const dfs = (i: number, sum: number) => {
if (sum > target) {
return;
}
if (sum === target) {
res.push([...t]);
return;
}
for (let j = i; j < n; j++) {
const num = candidates[j];
if (j > i && num === candidates[j - 1]) {
continue;
}
t.push(num);
dfs(j + 1, sum + num);
t.pop();
}
};
dfs(0, 0);
return res;
}
impl Solution {
fn dfs(i: usize, count: i32, candidates: &Vec<i32>, t: &mut Vec<i32>, res: &mut Vec<Vec<i32>>) {
if count < 0 {
return;
}
if count == 0 {
res.push(t.clone());
return;
}
for j in i..candidates.len() {
if j > i && candidates[j] == candidates[j - 1] {
continue;
}
let num = candidates[j];
t.push(num);
Self::dfs(j + 1, count - num, candidates, t, res);
t.pop();
}
}
pub fn combination_sum2(mut candidates: Vec<i32>, target: i32) -> Vec<Vec<i32>> {
candidates.sort();
let mut res = Vec::new();
Self::dfs(0, target, &candidates, &mut vec![], &mut res);
res
}
}
public class Solution {
public IList<IList<int>> CombinationSum2(int[] candidates, int target) {
Array.Sort(candidates);
var ans = new List<IList<int>>();
var t = new List<int>();
dfs(candidates, 0, 0, target, t, ans);
return ans;
}
private void dfs(int[] candidates, int i, int s, int target, IList<int> t, IList<IList<int>> ans) {
if (s > target) {
return;
}
if (s == target) {
ans.Add(new List<int>(t));
return;
}
for (int j = i; j < candidates.Length; ++j) {
if (j > i && candidates[j] == candidates[j - 1]) {
continue;
}
t.Add(candidates[j]);
dfs(candidates, j + 1, s + candidates[j], target, t, ans);
t.RemoveAt(t.Count - 1);
}
}
}