Skip to content

Latest commit

 

History

History
265 lines (224 loc) · 6.56 KB

File metadata and controls

265 lines (224 loc) · 6.56 KB

English Version

题目描述

给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix

 

示例 1:

输入:n = 3
输出:[[1,2,3],[8,9,4],[7,6,5]]

示例 2:

输入:n = 1
输出:[[1]]

 

提示:

  • 1 <= n <= 20

解法

方法一:模拟

直接模拟螺旋矩阵的生成过程。

定义一个二维数组 ans,用于存储螺旋矩阵。用 ij 分别表示当前位置的行号和列号,用 k 表示当前的方向编号,dirs 表示方向编号与方向的对应关系。

1 开始,依次填入矩阵中的每个位置。每次填入一个位置后,计算下一个位置的行号和列号,如果下一个位置不在矩阵中或者已经被填过,则改变方向,再计算下一个位置的行号和列号。

时间复杂度 $O(n^2)$,其中 $n$ 是矩阵的边长。忽略输出数组不计,空间复杂度 $O(1)$

Python3

class Solution:
    def generateMatrix(self, n: int) -> List[List[int]]:
        ans = [[0] * n for _ in range(n)]
        dirs = ((0, 1), (1, 0), (0, -1), (-1, 0))
        i = j = k = 0
        for v in range(1, n * n + 1):
            ans[i][j] = v
            x, y = i + dirs[k][0], j + dirs[k][1]
            if x < 0 or y < 0 or x >= n or y >= n or ans[x][y]:
                k = (k + 1) % 4
                x, y = i + dirs[k][0], j + dirs[k][1]
            i, j = x, y
        return ans

Java

class Solution {
    public int[][] generateMatrix(int n) {
        int[][] ans = new int[n][n];
        int i = 0, j = 0, k = 0;
        int[][] dirs = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
        for (int v = 1; v <= n * n; ++v) {
            ans[i][j] = v;
            int x = i + dirs[k][0], y = j + dirs[k][1];
            if (x < 0 || y < 0 || x >= n || y >= n || ans[x][y] > 0) {
                k = (k + 1) % 4;
                x = i + dirs[k][0];
                y = j + dirs[k][1];
            }
            i = x;
            j = y;
        }
        return ans;
    }
}

C++

class Solution {
public:
    const int dirs[4][2] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};

    vector<vector<int>> generateMatrix(int n) {
        vector<vector<int>> ans(n, vector<int>(n));
        int i = 0, j = 0, k = 0;
        for (int v = 1; v <= n * n; ++v) {
            ans[i][j] = v;
            int x = i + dirs[k][0], y = j + dirs[k][1];
            if (x < 0 || y < 0 || x >= n || y >= n || ans[x][y]) {
                k = (k + 1) % 4;
                x = i + dirs[k][0], y = j + dirs[k][1];
            }
            i = x, j = y;
        }
        return ans;
    }
};

Go

func generateMatrix(n int) [][]int {
	ans := make([][]int, n)
	for i := range ans {
		ans[i] = make([]int, n)
	}
	dirs := [4][2]int{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}
	var i, j, k int
	for v := 1; v <= n*n; v++ {
		ans[i][j] = v
		x, y := i+dirs[k][0], j+dirs[k][1]
		if x < 0 || y < 0 || x >= n || y >= n || ans[x][y] > 0 {
			k = (k + 1) % 4
			x, y = i+dirs[k][0], j+dirs[k][1]
		}
		i, j = x, y
	}
	return ans
}

JavaScript

/**
 * @param {number} n
 * @return {number[][]}
 */
var generateMatrix = function (n) {
    const ans = new Array(n).fill(0).map(() => new Array(n).fill(0));
    let [i, j, k] = [0, 0, 0];
    const dirs = [
        [0, 1],
        [1, 0],
        [0, -1],
        [-1, 0],
    ];
    for (let v = 1; v <= n * n; ++v) {
        ans[i][j] = v;
        let [x, y] = [i + dirs[k][0], j + dirs[k][1]];
        if (x < 0 || y < 0 || x >= n || y >= n || ans[x][y] > 0) {
            k = (k + 1) % 4;
            [x, y] = [i + dirs[k][0], j + dirs[k][1]];
        }
        [i, j] = [x, y];
    }
    return ans;
};

TypeScript

function generateMatrix(n: number): number[][] {
    let ans = Array.from({ length: n }, v => new Array(n));
    let dir = [
        [0, 1],
        [1, 0],
        [0, -1],
        [-1, 0],
    ];
    let i = 0,
        j = 0;
    for (let cnt = 1, k = 0; cnt <= n * n; cnt++) {
        ans[i][j] = cnt;
        let x = i + dir[k][0],
            y = j + dir[k][1];
        if (x < 0 || x == n || y < 0 || y == n || ans[x][y]) {
            k = (k + 1) % 4;
            (x = i + dir[k][0]), (y = j + dir[k][1]);
        }
        (i = x), (j = y);
    }
    return ans;
}
function generateMatrix(n: number): number[][] {
    const res = new Array(n).fill(0).map(() => new Array(n).fill(0));
    let num = 1;
    for (let i = 0; i < Math.floor(n / 2); i++) {
        for (let j = i; j < n - i - 1; j++) {
            res[i][j] = num++;
        }
        for (let j = i; j < n - i - 1; j++) {
            res[j][n - i - 1] = num++;
        }
        for (let j = i; j < n - i - 1; j++) {
            res[n - i - 1][n - j - 1] = num++;
        }
        for (let j = i; j < n - i - 1; j++) {
            res[n - j - 1][i] = num++;
        }
    }
    if (n % 2 === 1) {
        res[n >> 1][n >> 1] = num;
    }
    return res;
}

Rust

impl Solution {
    pub fn generate_matrix(n: i32) -> Vec<Vec<i32>> {
        let n = n as usize;
        let mut res = vec![vec![0; n]; n];
        let mut num = 1;
        for i in 0..n / 2 {
            for j in i..n - i - 1 {
                res[i][j] = num;
                num += 1;
            }
            for j in i..n - i - 1 {
                res[j][n - i - 1] = num;
                num += 1;
            }
            for j in i..n - i - 1 {
                res[n - i - 1][n - j - 1] = num;
                num += 1;
            }
            for j in i..n - i - 1 {
                res[n - j - 1][i] = num;
                num += 1;
            }
        }
        if n % 2 == 1 {
            res[n >> 1][n >> 1] = num;
        }
        res
    }
}

...