Skip to content

Latest commit

 

History

History
179 lines (136 loc) · 3.18 KB

File metadata and controls

179 lines (136 loc) · 3.18 KB

English Version

题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 12 个台阶。你有多少种不同的方法可以爬到楼顶呢?

 

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

 

提示:

  • 1 <= n <= 45

解法

方法一:递推

我们定义 $f[i]$ 表示爬到第 $i$ 阶楼梯的方法数,那么 $f[i]$ 可以由 $f[i - 1]$$f[i - 2]$ 转移而来,即:

$$ f[i] = f[i - 1] + f[i - 2] $$

初始条件为 $f[0] = 1$,$f[1] = 1$,即爬到第 0 阶楼梯的方法数为 1,爬到第 1 阶楼梯的方法数也为 1。

答案即为 $f[n]$

由于 $f[i]$ 只与 $f[i - 1]$$f[i - 2]$ 有关,因此我们可以只用两个变量 $a$$b$ 来维护当前的方法数,空间复杂度降低为 $O(1)$

时间复杂度 $O(n)$,空间复杂度 $O(1)$

Python3

class Solution:
    def climbStairs(self, n: int) -> int:
        a, b = 0, 1
        for _ in range(n):
            a, b = b, a + b
        return b

Java

class Solution {
    public int climbStairs(int n) {
        int a = 0, b = 1;
        for (int i = 0; i < n; ++i) {
            int c = a + b;
            a = b;
            b = c;
        }
        return b;
    }
}

C++

class Solution {
public:
    int climbStairs(int n) {
        int a = 0, b = 1;
        for (int i = 0; i < n; ++i) {
            int c = a + b;
            a = b;
            b = c;
        }
        return b;
    }
};

JavaScript

/**
 * @param {number} n
 * @return {number}
 */
var climbStairs = function (n) {
    let a = 0,
        b = 1;
    for (let i = 0; i < n; ++i) {
        const c = a + b;
        a = b;
        b = c;
    }
    return b;
};

Go

func climbStairs(n int) int {
    a, b := 0, 1
    for i := 0; i < n; i++ {
        a, b = b, a + b
    }
    return b
}

TypeScript

function climbStairs(n: number): number {
    let p = 1;
    let q = 1;
    for (let i = 1; i < n; i++) {
        [p, q] = [q, p + q];
    }
    return q;
}

Rust

impl Solution {
    pub fn climb_stairs(n: i32) -> i32 {
        let (mut p, mut q) = (1, 1);
        for i in 1..n {
            let t = p + q;
            p = q;
            q = t;
        }
        q
    }
}

...