设计一个支持 push
,pop
,top
操作,并能在常数时间内检索到最小元素的栈。
实现 MinStack
类:
MinStack()
初始化堆栈对象。void push(int val)
将元素val推入堆栈。void pop()
删除堆栈顶部的元素。int top()
获取堆栈顶部的元素。int getMin()
获取堆栈中的最小元素。
示例 1:
输入: ["MinStack","push","push","push","getMin","pop","top","getMin"] [[],[-2],[0],[-3],[],[],[],[]] 输出: [null,null,null,null,-3,null,0,-2] 解释: MinStack minStack = new MinStack(); minStack.push(-2); minStack.push(0); minStack.push(-3); minStack.getMin(); --> 返回 -3. minStack.pop(); minStack.top(); --> 返回 0. minStack.getMin(); --> 返回 -2.
提示:
-231 <= val <= 231 - 1
pop
、top
和getMin
操作总是在 非空栈 上调用push
,pop
,top
, andgetMin
最多被调用3 * 104
次
方法一:双栈
我们用两个栈来实现,其中 stk1
用来存储数据,stk2
用来存储当前栈中的最小值。初始时,stk2
中存储一个极大值。
- 当我们向栈中压入一个元素
$x$ 时,我们将$x$ 压入stk1
,并将min(x, stk2[-1])
压入stk2
。 - 当我们从栈中弹出一个元素时,我们将
stk1
和stk2
的栈顶元素都弹出。 - 当我们要获取当前栈中的栈顶元素时,我们只需要返回
stk1
的栈顶元素即可。 - 当我们要获取当前栈中的最小值时,我们只需要返回
stk2
的栈顶元素即可。
每个操作的时间复杂度为
class MinStack:
def __init__(self):
self.stk1 = []
self.stk2 = [inf]
def push(self, x: int) -> None:
self.stk1.append(x)
self.stk2.append(min(x, self.stk2[-1]))
def pop(self) -> None:
self.stk1.pop()
self.stk2.pop()
def top(self) -> int:
return self.stk1[-1]
def getMin(self) -> int:
return self.stk2[-1]
# Your MinStack object will be instantiated and called as such:
# obj = MinStack()
# obj.push(x)
# obj.pop()
# param_3 = obj.top()
# param_4 = obj.getMin()
class MinStack {
private Deque<Integer> stk1 = new ArrayDeque<>();
private Deque<Integer> stk2 = new ArrayDeque<>();
/** initialize your data structure here. */
public MinStack() {
stk2.push(Integer.MAX_VALUE);
}
public void push(int x) {
stk1.push(x);
stk2.push(Math.min(x, stk2.peek()));
}
public void pop() {
stk1.pop();
stk2.pop();
}
public int top() {
return stk1.peek();
}
public int getMin() {
return stk2.peek();
}
}
/**
* Your MinStack object will be instantiated and called as such:
* MinStack obj = new MinStack();
* obj.push(x);
* obj.pop();
* int param_3 = obj.top();
* int param_4 = obj.getMin();
*/
class MinStack {
public:
/** initialize your data structure here. */
MinStack() {
stk2.push(INT_MAX);
}
void push(int x) {
stk1.push(x);
stk2.push(min(x, stk2.top()));
}
void pop() {
stk1.pop();
stk2.pop();
}
int top() {
return stk1.top();
}
int getMin() {
return stk2.top();
}
private:
stack<int> stk1;
stack<int> stk2;
};
/**
* Your MinStack object will be instantiated and called as such:
* MinStack* obj = new MinStack();
* obj->push(x);
* obj->pop();
* int param_3 = obj->top();
* int param_4 = obj->getMin();
*/
class MinStack {
stack: number[];
mins: number[];
constructor() {
this.stack = [];
this.mins = [];
}
push(x: number): void {
this.stack.push(x);
this.mins.push(Math.min(this.getMin(), x));
}
pop(): void {
this.stack.pop();
this.mins.pop();
}
top(): number {
return this.stack[this.stack.length - 1];
}
getMin(): number {
return this.mins.length == 0
? Infinity
: this.mins[this.mins.length - 1];
}
}
/**
* Your MinStack object will be instantiated and called as such:
* var obj = new MinStack()
* obj.push(x)
* obj.pop()
* var param_3 = obj.top()
* var param_4 = obj.getMin()
*/
type MinStack struct {
stk1 []int
stk2 []int
}
/** initialize your data structure here. */
func Constructor() MinStack {
return MinStack{[]int{}, []int{math.MaxInt32}}
}
func (this *MinStack) Push(x int) {
this.stk1 = append(this.stk1, x)
this.stk2 = append(this.stk2, min(x, this.stk2[len(this.stk2)-1]))
}
func (this *MinStack) Pop() {
this.stk1 = this.stk1[:len(this.stk1)-1]
this.stk2 = this.stk2[:len(this.stk2)-1]
}
func (this *MinStack) Top() int {
return this.stk1[len(this.stk1)-1]
}
func (this *MinStack) GetMin() int {
return this.stk2[len(this.stk2)-1]
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
/**
* Your MinStack object will be instantiated and called as such:
* obj := Constructor();
* obj.Push(x);
* obj.Pop();
* param_3 := obj.Top();
* param_4 := obj.GetMin();
*/
use std::collections::VecDeque;
struct MinStack {
stack: VecDeque<i32>,
min_stack: VecDeque<i32>,
}
/**
* `&self` means the method takes an immutable reference.
* If you need a mutable reference, change it to `&mut self` instead.
*/
impl MinStack {
/** initialize your data structure here. */
fn new() -> Self {
Self { stack: VecDeque::new(), min_stack: VecDeque::new() }
}
fn push(&mut self, x: i32) {
self.stack.push_back(x);
if self.min_stack.is_empty() || *self.min_stack.back().unwrap() >= x {
self.min_stack.push_back(x);
}
}
fn pop(&mut self) {
let val = self.stack.pop_back().unwrap();
if *self.min_stack.back().unwrap() == val {
self.min_stack.pop_back();
}
}
fn top(&self) -> i32 {
*self.stack.back().unwrap()
}
fn get_min(&self) -> i32 {
*self.min_stack.back().unwrap()
}
}
/**
* Your MinStack object will be instantiated and called as such:
* let obj = MinStack::new();
* obj.push(x);
* obj.pop();
* let ret_3: i32 = obj.top();
* let ret_4: i32 = obj.get_min();
*/
public class MinStack {
private Stack<int> stk1 = new Stack<int>();
private Stack<int> stk2 = new Stack<int>();
/** initialize your data structure here. */
public MinStack() {
stk2.Push(int.MaxValue);
}
public void Push(int x) {
stk1.Push(x);
stk2.Push(Math.Min(x, GetMin()));
}
public void Pop() {
stk1.Pop();
stk2.Pop();
}
public int Top() {
return stk1.Peek();
}
public int GetMin() {
return stk2.Peek();
}
}
/**
* Your MinStack object will be instantiated and called as such:
* MinStack obj = new MinStack();
* obj.Push(x);
* obj.Pop();
* int param_3 = obj.Top();
* int param_4 = obj.GetMin();
*/