n
个灯泡排成一行,编号从 1
到 n
。最初,所有灯泡都关闭。每天 只打开一个 灯泡,直到 n
天后所有灯泡都打开。
给你一个长度为 n
的灯泡数组 blubs
,其中 bulls[i] = x
意味着在第 (i+1)
天,我们会把在位置 x
的灯泡打开,其中 i
从 0 开始,x
从 1 开始。
给你一个整数 k
,请返回恰好有两个打开的灯泡,且它们中间 正好 有 k
个 全部关闭的 灯泡的 最小的天数 。如果不存在这种情况,返回 -1
。
示例 1:
输入: bulbs = [1,3,2],k = 1 输出:2 解释: 第一天 bulbs[0] = 1,打开第一个灯泡 [1,0,0] 第二天 bulbs[1] = 3,打开第三个灯泡 [1,0,1] 第三天 bulbs[2] = 2,打开第二个灯泡 [1,1,1] 返回2,因为在第二天,两个打开的灯泡之间恰好有一个关闭的灯泡。
示例 2:
输入:bulbs = [1,2,3],k = 1 输出:-1
提示:
n == bulbs.length
1 <= n <= 2 * 104
1 <= bulbs[i] <= n
bulbs
是一个由从1
到n
的数字构成的排列0 <= k <= 2 * 104
方法一:树状数组
树状数组,也称作“二叉索引树”(Binary Indexed Tree)或 Fenwick 树。 它可以高效地实现如下两个操作:
- 单点更新
update(x, delta)
: 把序列 x 位置的数加上一个值 delta; - 前缀和查询
query(x)
:查询序列[1,...x]
区间的区间和,即位置 x 的前缀和。
这两个操作的时间复杂度均为
class BinaryIndexedTree:
def __init__(self, n):
self.n = n
self.c = [0] * (n + 1)
@staticmethod
def lowbit(x):
return x & -x
def update(self, x, delta):
while x <= self.n:
self.c[x] += delta
x += BinaryIndexedTree.lowbit(x)
def query(self, x):
s = 0
while x > 0:
s += self.c[x]
x -= BinaryIndexedTree.lowbit(x)
return s
class Solution:
def kEmptySlots(self, bulbs: List[int], k: int) -> int:
n = len(bulbs)
tree = BinaryIndexedTree(n)
for i, x in enumerate(bulbs, 1):
tree.update(x, 1)
case1 = (
x - k - 1 > 0
and tree.query(x - k - 1) - tree.query(x - k - 2) == 1
and tree.query(x - 1) - tree.query(x - k - 1) == 0
)
case2 = (
x + k + 1 <= n
and tree.query(x + k + 1) - tree.query(x + k) == 1
and tree.query(x + k) - tree.query(x) == 0
)
if case1 or case2:
return i
return -1
class Solution {
public int kEmptySlots(int[] bulbs, int k) {
int n = bulbs.length;
BinaryIndexedTree tree = new BinaryIndexedTree(n);
for (int i = 0; i < n; ++i) {
int x = bulbs[i];
tree.update(x, 1);
boolean case1 = x - k - 1 > 0 && tree.query(x - k - 1) - tree.query(x - k - 2) == 1
&& tree.query(x - 1) - tree.query(x - k - 1) == 0;
boolean case2 = x + k + 1 <= n && tree.query(x + k + 1) - tree.query(x + k) == 1
&& tree.query(x + k) - tree.query(x) == 0;
if (case1 || case2) {
return i + 1;
}
}
return -1;
}
}
class BinaryIndexedTree {
private int n;
private int[] c;
public BinaryIndexedTree(int n) {
this.n = n;
c = new int[n + 1];
}
public void update(int x, int delta) {
while (x <= n) {
c[x] += delta;
x += lowbit(x);
}
}
public int query(int x) {
int s = 0;
while (x > 0) {
s += c[x];
x -= lowbit(x);
}
return s;
}
public static int lowbit(int x) {
return x & -x;
}
}
class BinaryIndexedTree {
public:
int n;
vector<int> c;
BinaryIndexedTree(int _n)
: n(_n)
, c(_n + 1) { }
void update(int x, int delta) {
while (x <= n) {
c[x] += delta;
x += lowbit(x);
}
}
int query(int x) {
int s = 0;
while (x > 0) {
s += c[x];
x -= lowbit(x);
}
return s;
}
int lowbit(int x) {
return x & -x;
}
};
class Solution {
public:
int kEmptySlots(vector<int>& bulbs, int k) {
int n = bulbs.size();
BinaryIndexedTree* tree = new BinaryIndexedTree(n);
for (int i = 0; i < n; ++i) {
int x = bulbs[i];
tree->update(x, 1);
bool case1 = x - k - 1 > 0 && tree->query(x - k - 1) - tree->query(x - k - 2) == 1 && tree->query(x - 1) - tree->query(x - k - 1) == 0;
bool case2 = x + k + 1 <= n && tree->query(x + k + 1) - tree->query(x + k) == 1 && tree->query(x + k) - tree->query(x) == 0;
if (case1 || case2) return i + 1;
}
return -1;
}
};
type BinaryIndexedTree struct {
n int
c []int
}
func newBinaryIndexedTree(n int) *BinaryIndexedTree {
c := make([]int, n+1)
return &BinaryIndexedTree{n, c}
}
func (this *BinaryIndexedTree) lowbit(x int) int {
return x & -x
}
func (this *BinaryIndexedTree) update(x, delta int) {
for x <= this.n {
this.c[x] += delta
x += this.lowbit(x)
}
}
func (this *BinaryIndexedTree) query(x int) int {
s := 0
for x > 0 {
s += this.c[x]
x -= this.lowbit(x)
}
return s
}
func kEmptySlots(bulbs []int, k int) int {
n := len(bulbs)
tree := newBinaryIndexedTree(n)
for i, x := range bulbs {
tree.update(x, 1)
case1 := x-k-1 > 0 && tree.query(x-k-1)-tree.query(x-k-2) == 1 && tree.query(x-1)-tree.query(x-k-1) == 0
case2 := x+k+1 <= n && tree.query(x+k+1)-tree.query(x+k) == 1 && tree.query(x+k)-tree.query(x) == 0
if case1 || case2 {
return i + 1
}
}
return -1
}