Skip to content

Latest commit

 

History

History
321 lines (270 loc) · 10 KB

File metadata and controls

321 lines (270 loc) · 10 KB

English Version

题目描述

一个 n x n 的二维网络 board 仅由 0 和 1 组成 。每次移动,你能任意交换两列或是两行的位置。

返回 将这个矩阵变为  “棋盘”  所需的最小移动次数 。如果不存在可行的变换,输出 -1

“棋盘” 是指任意一格的上下左右四个方向的值均与本身不同的矩阵。

 

示例 1:

输入: board = [[0,1,1,0],[0,1,1,0],[1,0,0,1],[1,0,0,1]]
输出: 2
解释:一种可行的变换方式如下,从左到右:
第一次移动交换了第一列和第二列。
第二次移动交换了第二行和第三行。

示例 2:

输入: board = [[0, 1], [1, 0]]
输出: 0
解释: 注意左上角的格值为0时也是合法的棋盘,也是合法的棋盘.

示例 3:

输入: board = [[1, 0], [1, 0]]
输出: -1
解释: 任意的变换都不能使这个输入变为合法的棋盘。

 

提示:

  • n == board.length
  • n == board[i].length
  • 2 <= n <= 30
  • board[i][j] 将只包含 0或 1

解法

方法一:规律观察 + 状态压缩

在一个有效的棋盘中,有且仅有两种“行”。

例如,如果棋盘中有一行为“01010011”,那么任何其它行只能为“01010011”或者“10101100”。列也满足这种性质。

另外,每一行和每一列都有一半 $0$ 和一半 $1$。假设棋盘为 $n \times n$

  • $n = 2 \times k$,则每一行和每一列都有 $k$$1$$k$$0$
  • $n = 2 \times k + 1$,则每一行都有 $k$$1$$k + 1$$0$,或者 $k + 1$$1$$k$$0$

基于以上的结论,我们可以判断一个棋盘是否有效。若有效,可以计算出最小的移动次数。

$n$ 为偶数,最终的合法棋盘有两种可能,即第一行的元素为“010101...”,或者“101010...”。我们计算出这两种可能所需要交换的次数的较小值作为答案。

$n$ 为奇数,那么最终的合法棋盘只有一种可能。如果第一行中 $0$ 的数目大于 $1$,那么最终一盘的第一行只能是“01010...”,否则就是“10101...”。同样算出次数作为答案。

时间复杂度 $O(n^2)$

Python3

class Solution:
    def movesToChessboard(self, board: List[List[int]]) -> int:
        def f(mask, cnt):
            ones = mask.bit_count()
            if n & 1:
                if abs(n - 2 * ones) != 1 or abs(n - 2 * cnt) != 1:
                    return -1
                if ones == n // 2:
                    return n // 2 - (mask & 0xAAAAAAAA).bit_count()
                return (n + 1) // 2 - (mask & 0x55555555).bit_count()
            else:
                if ones != n // 2 or cnt != n // 2:
                    return -1
                cnt0 = n // 2 - (mask & 0xAAAAAAAA).bit_count()
                cnt1 = n // 2 - (mask & 0x55555555).bit_count()
                return min(cnt0, cnt1)

        n = len(board)
        mask = (1 << n) - 1
        rowMask = colMask = 0
        for i in range(n):
            rowMask |= board[0][i] << i
            colMask |= board[i][0] << i
        revRowMask = mask ^ rowMask
        revColMask = mask ^ colMask
        sameRow = sameCol = 0
        for i in range(n):
            curRowMask = curColMask = 0
            for j in range(n):
                curRowMask |= board[i][j] << j
                curColMask |= board[j][i] << j
            if curRowMask not in (rowMask, revRowMask) or curColMask not in (colMask, revColMask):
                return -1
            sameRow += curRowMask == rowMask
            sameCol += curColMask == colMask
        t1 = f(rowMask, sameRow)
        t2 = f(colMask, sameCol)
        return -1 if t1 == -1 or t2 == -1 else t1 + t2

Java

class Solution {
    private int n;

    public int movesToChessboard(int[][] board) {
        n = board.length;
        int mask = (1 << n) - 1;
        int rowMask = 0, colMask = 0;
        for (int i = 0; i < n; ++i) {
            rowMask |= board[0][i] << i;
            colMask |= board[i][0] << i;
        }
        int revRowMask = mask ^ rowMask;
        int revColMask = mask ^ colMask;
        int sameRow = 0, sameCol = 0;
        for (int i = 0; i < n; ++i) {
            int curRowMask = 0, curColMask = 0;
            for (int j = 0; j < n; ++j) {
                curRowMask |= board[i][j] << j;
                curColMask |= board[j][i] << j;
            }
            if (curRowMask != rowMask && curRowMask != revRowMask) {
                return -1;
            }
            if (curColMask != colMask && curColMask != revColMask) {
                return -1;
            }
            sameRow += curRowMask == rowMask ? 1 : 0;
            sameCol += curColMask == colMask ? 1 : 0;
        }
        int t1 = f(rowMask, sameRow);
        int t2 = f(colMask, sameCol);
        return t1 == -1 || t2 == -1 ? -1 : t1 + t2;
    }

    private int f(int mask, int cnt) {
        int ones = Integer.bitCount(mask);
        if (n % 2 == 1) {
            if (Math.abs(n - ones * 2) != 1 || Math.abs(n - cnt * 2) != 1) {
                return -1;
            }
            if (ones == n / 2) {
                return n / 2 - Integer.bitCount(mask & 0xAAAAAAAA);
            }
            return (n / 2 + 1) - Integer.bitCount(mask & 0x55555555);
        } else {
            if (ones != n / 2 || cnt != n / 2) {
                return -1;
            }
            int cnt0 = n / 2 - Integer.bitCount(mask & 0xAAAAAAAA);
            int cnt1 = n / 2 - Integer.bitCount(mask & 0x55555555);
            return Math.min(cnt0, cnt1);
        }
    }
}

C++

class Solution {
public:
    int n;
    int movesToChessboard(vector<vector<int>>& board) {
        n = board.size();
        int mask = (1 << n) - 1;
        int rowMask = 0, colMask = 0;
        for (int i = 0; i < n; ++i) {
            rowMask |= board[0][i] << i;
            colMask |= board[i][0] << i;
        }
        int revRowMask = mask ^ rowMask;
        int revColMask = mask ^ colMask;
        int sameRow = 0, sameCol = 0;
        for (int i = 0; i < n; ++i) {
            int curRowMask = 0, curColMask = 0;
            for (int j = 0; j < n; ++j) {
                curRowMask |= board[i][j] << j;
                curColMask |= board[j][i] << j;
            }
            if (curRowMask != rowMask && curRowMask != revRowMask) return -1;
            if (curColMask != colMask && curColMask != revColMask) return -1;
            sameRow += curRowMask == rowMask;
            sameCol += curColMask == colMask;
        }
        int t1 = f(rowMask, sameRow);
        int t2 = f(colMask, sameCol);
        return t1 == -1 || t2 == -1 ? -1 : t1 + t2;
    }

    int f(int mask, int cnt) {
        int ones = __builtin_popcount(mask);
        if (n & 1) {
            if (abs(n - ones * 2) != 1 || abs(n - cnt * 2) != 1) return -1;
            if (ones == n / 2) return n / 2 - __builtin_popcount(mask & 0xAAAAAAAA);
            return (n + 1) / 2 - __builtin_popcount(mask & 0x55555555);
        } else {
            if (ones != n / 2 || cnt != n / 2) return -1;
            int cnt0 = (n / 2 - __builtin_popcount(mask & 0xAAAAAAAA));
            int cnt1 = (n / 2 - __builtin_popcount(mask & 0x55555555));
            return min(cnt0, cnt1);
        }
    }
};

Go

func movesToChessboard(board [][]int) int {
	n := len(board)
	mask := (1 << n) - 1
	rowMask, colMask := 0, 0
	for i := 0; i < n; i++ {
		rowMask |= board[0][i] << i
		colMask |= board[i][0] << i
	}
	revRowMask := mask ^ rowMask
	revColMask := mask ^ colMask
	sameRow, sameCol := 0, 0
	for i := 0; i < n; i++ {
		curRowMask, curColMask := 0, 0
		for j := 0; j < n; j++ {
			curRowMask |= board[i][j] << j
			curColMask |= board[j][i] << j
		}
		if curRowMask != rowMask && curRowMask != revRowMask {
			return -1
		}
		if curColMask != colMask && curColMask != revColMask {
			return -1
		}
		if curRowMask == rowMask {
			sameRow++
		}
		if curColMask == colMask {
			sameCol++
		}
	}
	f := func(mask, cnt int) int {
		ones := bits.OnesCount(uint(mask))
		if n%2 == 1 {
			if abs(n-ones*2) != 1 || abs(n-cnt*2) != 1 {
				return -1
			}
			if ones == n/2 {
				return n/2 - bits.OnesCount(uint(mask&0xAAAAAAAA))
			}
			return (n+1)/2 - bits.OnesCount(uint(mask&0x55555555))
		} else {
			if ones != n/2 || cnt != n/2 {
				return -1
			}
			cnt0 := n/2 - bits.OnesCount(uint(mask&0xAAAAAAAA))
			cnt1 := n/2 - bits.OnesCount(uint(mask&0x55555555))
			return min(cnt0, cnt1)
		}
	}
	t1 := f(rowMask, sameRow)
	t2 := f(colMask, sameCol)
	if t1 == -1 || t2 == -1 {
		return -1
	}
	return t1 + t2
}

func abs(x int) int {
	if x < 0 {
		return -x
	}
	return x
}

func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}

...