给出一个字符串 s
和一个整数 k
,若这个字符串是不是一个「k 回文 」,则返回 true
。
如果可以通过从字符串中删去最多 k
个字符将其转换为回文,那么这个字符串就是一个「k 回文 」。
示例 1:
输入:s = "abcdeca", k = 2 输出:true 解释:删去字符 “b” 和 “e”。
示例 2:
输入:s = "abbababa", k = 1 输出:true
提示:
1 <= s.length <= 1000
s
中只含有小写英文字母1 <= k <= s.length
方法一:动态规划
题目要求删去最多
我们定义
当
当
然后是否存在
时间复杂度
class Solution:
def isValidPalindrome(self, s: str, k: int) -> bool:
n = len(s)
f = [[0] * n for _ in range(n)]
for i in range(n):
f[i][i] = 1
for i in range(n - 2, -1, -1):
for j in range(i + 1, n):
if s[i] == s[j]:
f[i][j] = f[i + 1][j - 1] + 2
else:
f[i][j] = max(f[i + 1][j], f[i][j - 1])
if f[i][j] + k >= n:
return True
return False
class Solution {
public boolean isValidPalindrome(String s, int k) {
int n = s.length();
int[][] f = new int[n][n];
for (int i = 0; i < n; ++i) {
f[i][i] = 1;
}
for (int i = n - 2; i >= 0; --i) {
for (int j = i + 1; j < n; ++j) {
if (s.charAt(i) == s.charAt(j)) {
f[i][j] = f[i + 1][j - 1] + 2;
} else {
f[i][j] = Math.max(f[i + 1][j], f[i][j - 1]);
}
if (f[i][j] + k >= n) {
return true;
}
}
}
return false;
}
}
class Solution {
public:
bool isValidPalindrome(string s, int k) {
int n = s.length();
int f[n][n];
memset(f, 0, sizeof f);
for (int i = 0; i < n; ++i) {
f[i][i] = 1;
}
for (int i = n - 2; i >= 0; --i) {
for (int j = i + 1; j < n; ++j) {
if (s[i] == s[j]) {
f[i][j] = f[i + 1][j - 1] + 2;
} else {
f[i][j] = max(f[i + 1][j], f[i][j - 1]);
}
if (f[i][j] + k >= n) {
return true;
}
}
}
return false;
}
};
func isValidPalindrome(s string, k int) bool {
n := len(s)
f := make([][]int, n)
for i := range f {
f[i] = make([]int, n)
f[i][i] = 1
}
for i := n - 2; i >= 0; i-- {
for j := i + 1; j < n; j++ {
if s[i] == s[j] {
f[i][j] = f[i+1][j-1] + 2
} else {
f[i][j] = max(f[i+1][j], f[i][j-1])
}
if f[i][j]+k >= n {
return true
}
}
}
return false
}
func max(a, b int) int {
if a > b {
return a
}
return b
}