- Import pascalVOC annotations into Biigle.
- Automatic feature detection on Biigle images using yoloV5 models and annotations import back in Biigle via pascalVOC
The script requires pandas
, pytorch
, seaborn
, pillow
, tqdm
, opencv
, yaml
, pascal-voc-writer
.
conda create --name annotations_to_biigle -y
conda activate annotations_to_biigle
conda install requests -y
conda install pytorch torchvision torchaudio cpuonly -c pytorch -y
conda install -c conda-forge pandas seaborn tqdm opencv -y
pip install pascal_voc_writer pyyaml
Alternatively, a conda environment can be installed through the environment.yml
file.
Example yoloV5 detection model can be found on: https://zenodo.org/record/5539915
See the annotations_to_biigle
file.
Name | Description |
---|---|
email |
Your email address. |
token |
Your Biigle token. |
label_tree_id |
Your label tree id. This label tree MUST contain every classes possibly detected or annotated. Otherwise, a new label will automatically be added |
volume_id |
The volume id where your images are located. |
path_model |
Path to your yoloV5 model. |
path_classes |
Path to a file (.txt or .names) with ALL your classes (one class per row). |
path_data |
Path where to store downloaded images, or where image are located. |
confidence |
Confidence detection level. |
export_biigle |
Boolean, export to Biigle ? |
utils_pascalVOC.download_images
: Download all images from the volume iddetect_yoloV5.model_inference
: Do inference and export to biigleexport_to_biigle.pascalVOC_to_biigle
: Export annotations from pascalVOC to Biigle