-
Notifications
You must be signed in to change notification settings - Fork 0
/
Finetune_LMHL5_8_8_RTE.log
404 lines (403 loc) · 21 KB
/
Finetune_LMHL5_8_8_RTE.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
01/08/2021 12:06:47 1
01/08/2021 12:06:47 Launching the MT-DNN training
01/08/2021 12:06:47 Loading data/canonical_data/bert_base_uncased_lower/rte_train.json as task 1
01/08/2021 12:06:47 ####################
01/08/2021 12:06:47 {'log_file': 'checkpoints/finetune-rte-LM_loss8/log.log', 'tensorboard': False, 'tensorboard_logdir': 'tensorboard_logdir', 'init_checkpoint': 'checkpoints/mtdnn-LM_loss8/model_4.pt', 'data_dir': 'data/canonical_data/bert_base_uncased_lower', 'data_sort_on': False, 'name': 'farmer', 'task_def': 'experiments/glue/glue_task_def.yml', 'train_datasets': ['rte'], 'test_datasets': ['rte'], 'glue_format_on': False, 'mkd_opt': 0, 'do_padding': False, 'update_bert_opt': 0, 'multi_gpu_on': True, 'mem_cum_type': 'simple', 'answer_num_turn': 5, 'answer_mem_drop_p': 0.1, 'answer_att_hidden_size': 128, 'answer_att_type': 'bilinear', 'answer_rnn_type': 'gru', 'answer_sum_att_type': 'bilinear', 'answer_merge_opt': 1, 'answer_mem_type': 1, 'max_answer_len': 10, 'answer_dropout_p': 0.1, 'answer_weight_norm_on': False, 'dump_state_on': False, 'answer_opt': 1, 'mtl_opt': 0, 'ratio': 0, 'mix_opt': 0, 'max_seq_len': 512, 'init_ratio': 1, 'encoder_type': <EncoderModelType.BERT: 1>, 'num_hidden_layers': -1, 'bert_model_type': 'bert-base-uncased', 'do_lower_case': False, 'masked_lm_prob': 0.15, 'short_seq_prob': 0.2, 'max_predictions_per_seq': 128, 'bin_on': False, 'bin_size': 64, 'bin_grow_ratio': 0.5, 'cuda': True, 'log_per_updates': 500, 'save_per_updates': 10000, 'save_per_updates_on': False, 'epochs': 20, 'batch_size': 8, 'batch_size_eval': 8, 'optimizer': 'adamax', 'grad_clipping': 0.0, 'global_grad_clipping': 1.0, 'weight_decay': 0, 'learning_rate': 5e-05, 'momentum': 0, 'warmup': 0.1, 'warmup_schedule': 'warmup_linear', 'adam_eps': 1e-06, 'vb_dropout': True, 'dropout_p': 0.1, 'dropout_w': 0.0, 'bert_dropout_p': 0.1, 'model_ckpt': 'checkpoints/model_0.pt', 'resume': False, 'have_lr_scheduler': True, 'multi_step_lr': '10,20,30', 'lr_gamma': 0.5, 'scheduler_type': 'ms', 'output_dir': 'checkpoints/finetune-rte-LM_loss8', 'seed': 2018, 'grad_accumulation_step': 1, 'fp16': False, 'fp16_opt_level': 'O1', 'adv_train': False, 'adv_opt': 0, 'adv_norm_level': 0, 'adv_p_norm': 'inf', 'adv_alpha': 1, 'adv_k': 1, 'adv_step_size': 0.001, 'adv_noise_var': 1e-05, 'adv_epsilon': 1e-06, 'loss_pred': True, 'collect_uncertainty': None, 'collect_topk': 0.1, 'load_ranked_data': None, 'mc_dropout': 0, 'finetune': True, 'encode_mode': False, 'task_def_list': [{'self': '{}', 'label_vocab': '<data_utils.vocab.Vocabulary object at 0x7f5e4a9598b0>', 'n_class': '2', 'data_type': '<DataFormat.PremiseAndOneHypothesis: 2>', 'task_type': '<TaskType.Classification: 1>', 'metric_meta': '(<Metric.ACC: 0>,)', 'split_names': "['train', 'dev', 'test']", 'enable_san': 'False', 'dropout_p': 'None', 'loss': '<LossCriterion.CeCriterion: 0>', 'kd_loss': '<LossCriterion.MseCriterion: 1>', 'adv_loss': '<LossCriterion.SymKlCriterion: 7>', '__class__': "<class 'experiments.exp_def.TaskDef'>"}]}
01/08/2021 12:06:47 ####################
01/08/2021 12:06:47 ############# Gradient Accumulation Info #############
01/08/2021 12:06:47 number of step: 6240
01/08/2021 12:06:47 number of grad grad_accumulation step: 1
01/08/2021 12:06:47 adjusted number of step: 6240
01/08/2021 12:06:47 ############# Gradient Accumulation Info #############
01/08/2021 12:06:57
############# Model Arch of MT-DNN #############
SANBertNetwork(
(dropout_list): ModuleList(
(0): DropoutWrapper()
(1): DropoutWrapper()
(2): DropoutWrapper()
(3): DropoutWrapper()
(4): DropoutWrapper()
(5): DropoutWrapper()
(6): DropoutWrapper()
(7): DropoutWrapper()
)
(bert): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(30522, 768, padding_idx=0)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(6): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(7): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(8): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(9): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(10): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(11): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
(loss_pred_fc): Linear(in_features=768, out_features=1, bias=True)
(scoring_list): ModuleList(
(0): Linear(in_features=768, out_features=3, bias=True)
(1): Linear(in_features=768, out_features=2, bias=True)
(2): Linear(in_features=768, out_features=2, bias=True)
(3): Linear(in_features=768, out_features=2, bias=True)
(4): Linear(in_features=768, out_features=2, bias=True)
(5): Linear(in_features=768, out_features=2, bias=True)
(6): Linear(in_features=768, out_features=2, bias=True)
(7): Linear(in_features=768, out_features=1, bias=True)
)
)
01/08/2021 12:06:57 Total number of params: 109495313
01/08/2021 12:06:57 At epoch 0
01/08/2021 12:06:57 Task [ 1] updates[ 1] train loss[0.82788] remaining[0:02:36]
01/08/2021 12:07:58 Task rte -- epoch 0 -- Dev ACC: 69.675
01/08/2021 12:08:09 [new test scores saved.]
01/08/2021 12:08:16 At epoch 1
01/08/2021 12:08:51 Task [ 1] updates[ 500] train loss[0.59723] remaining[0:00:23]
01/08/2021 12:09:17 Task rte -- epoch 1 -- Dev ACC: 70.758
01/08/2021 12:09:27 [new test scores saved.]
01/08/2021 12:09:32 At epoch 2
01/08/2021 12:10:33 Task rte -- epoch 2 -- Dev ACC: 68.953
01/08/2021 12:10:44 [new test scores saved.]
01/08/2021 12:10:48 At epoch 3
01/08/2021 12:11:00 Task [ 1] updates[ 1000] train loss[0.51846] remaining[0:00:47]
01/08/2021 12:11:47 Task rte -- epoch 3 -- Dev ACC: 68.953
01/08/2021 12:11:58 [new test scores saved.]
01/08/2021 12:12:02 At epoch 4
01/08/2021 12:12:49 Task [ 1] updates[ 1500] train loss[0.43312] remaining[0:00:11]
01/08/2021 12:13:02 Task rte -- epoch 4 -- Dev ACC: 67.870
01/08/2021 12:13:13 [new test scores saved.]
01/08/2021 12:13:18 At epoch 5
01/08/2021 12:14:21 Task rte -- epoch 5 -- Dev ACC: 72.202
01/08/2021 12:14:32 [new test scores saved.]
01/08/2021 12:14:37 At epoch 6
01/08/2021 12:15:01 Task [ 1] updates[ 2000] train loss[0.35895] remaining[0:00:34]
01/08/2021 12:15:37 Task rte -- epoch 6 -- Dev ACC: 72.563
01/08/2021 12:15:48 [new test scores saved.]
01/08/2021 12:15:53 At epoch 7
01/08/2021 12:16:54 Task rte -- epoch 7 -- Dev ACC: 72.924
01/08/2021 12:17:05 [new test scores saved.]
01/08/2021 12:17:10 At epoch 8
01/08/2021 12:17:11 Task [ 1] updates[ 2500] train loss[0.30127] remaining[0:01:07]
01/08/2021 12:18:11 Task rte -- epoch 8 -- Dev ACC: 72.563
01/08/2021 12:18:22 [new test scores saved.]
01/08/2021 12:18:27 At epoch 9
01/08/2021 12:19:04 Task [ 1] updates[ 3000] train loss[0.25856] remaining[0:00:23]
01/08/2021 12:19:28 Task rte -- epoch 9 -- Dev ACC: 72.202
01/08/2021 12:19:39 [new test scores saved.]
01/08/2021 12:19:43 At epoch 10
01/08/2021 12:20:42 Task rte -- epoch 10 -- Dev ACC: 73.646
01/08/2021 12:20:53 [new test scores saved.]
01/08/2021 12:20:57 At epoch 11
01/08/2021 12:21:10 Task [ 1] updates[ 3500] train loss[0.22630] remaining[0:00:45]
01/08/2021 12:21:56 Task rte -- epoch 11 -- Dev ACC: 76.173
01/08/2021 12:22:07 [new test scores saved.]
01/08/2021 12:22:11 At epoch 12
01/08/2021 12:22:58 Task [ 1] updates[ 4000] train loss[0.20062] remaining[0:00:10]
01/08/2021 12:23:10 Task rte -- epoch 12 -- Dev ACC: 74.729
01/08/2021 12:23:20 [new test scores saved.]
01/08/2021 12:23:25 At epoch 13
01/08/2021 12:24:24 Task rte -- epoch 13 -- Dev ACC: 74.007
01/08/2021 12:24:35 [new test scores saved.]
01/08/2021 12:24:40 At epoch 14
01/08/2021 12:25:04 Task [ 1] updates[ 4500] train loss[0.17951] remaining[0:00:33]
01/08/2021 12:25:38 Task rte -- epoch 14 -- Dev ACC: 74.368
01/08/2021 12:25:49 [new test scores saved.]
01/08/2021 12:25:54 At epoch 15
01/08/2021 12:26:52 Task rte -- epoch 15 -- Dev ACC: 74.007
01/08/2021 12:27:03 [new test scores saved.]
01/08/2021 12:27:08 At epoch 16
01/08/2021 12:27:09 Task [ 1] updates[ 5000] train loss[0.16215] remaining[0:01:01]
01/08/2021 12:28:06 Task rte -- epoch 16 -- Dev ACC: 74.007
01/08/2021 12:28:17 [new test scores saved.]
01/08/2021 12:28:22 At epoch 17
01/08/2021 12:28:57 Task [ 1] updates[ 5500] train loss[0.14781] remaining[0:00:21]
01/08/2021 12:29:21 Task rte -- epoch 17 -- Dev ACC: 74.729
01/08/2021 12:29:32 [new test scores saved.]
01/08/2021 12:29:37 At epoch 18
01/08/2021 12:30:36 Task rte -- epoch 18 -- Dev ACC: 75.090
01/08/2021 12:30:48 [new test scores saved.]
01/08/2021 12:30:53 At epoch 19
01/08/2021 12:31:06 Task [ 1] updates[ 6000] train loss[0.13606] remaining[0:00:45]
01/08/2021 12:31:51 Task rte -- epoch 19 -- Dev ACC: 75.090
01/08/2021 12:32:02 [new test scores saved.]