-
Notifications
You must be signed in to change notification settings - Fork 0
/
STDNN_MRPC.log
executable file
·407 lines (406 loc) · 21.3 KB
/
STDNN_MRPC.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
01/05/2021 02:32:44 1
01/05/2021 02:32:44 Launching the MT-DNN training
01/05/2021 02:32:44 Loading data/canonical_data/bert_base_uncased_lower/mrpc_train.json as task 0
01/05/2021 02:32:45 ####################
01/05/2021 02:32:45 {'log_file': 'checkpoints/2021-01-05T1432_bert-base-uncased_mrpc/log.log', 'tensorboard': False, 'tensorboard_logdir': 'tensorboard_logdir', 'init_checkpoint': 'bert-base-uncased', 'data_dir': 'data/canonical_data/bert_base_uncased_lower', 'data_sort_on': False, 'name': 'farmer', 'task_def': 'experiments/glue/glue_task_def.yml', 'train_datasets': ['mrpc'], 'test_datasets': ['mrpc'], 'glue_format_on': False, 'mkd_opt': 0, 'do_padding': False, 'update_bert_opt': 0, 'multi_gpu_on': True, 'mem_cum_type': 'simple', 'answer_num_turn': 5, 'answer_mem_drop_p': 0.1, 'answer_att_hidden_size': 128, 'answer_att_type': 'bilinear', 'answer_rnn_type': 'gru', 'answer_sum_att_type': 'bilinear', 'answer_merge_opt': 1, 'answer_mem_type': 1, 'max_answer_len': 10, 'answer_dropout_p': 0.1, 'answer_weight_norm_on': False, 'dump_state_on': False, 'answer_opt': 1, 'mtl_opt': 0, 'ratio': 0, 'mix_opt': 0, 'max_seq_len': 512, 'init_ratio': 1, 'encoder_type': <EncoderModelType.BERT: 1>, 'num_hidden_layers': -1, 'bert_model_type': 'bert-base-uncased', 'do_lower_case': False, 'masked_lm_prob': 0.15, 'short_seq_prob': 0.2, 'max_predictions_per_seq': 128, 'bin_on': False, 'bin_size': 64, 'bin_grow_ratio': 0.5, 'cuda': True, 'log_per_updates': 500, 'save_per_updates': 10000, 'save_per_updates_on': False, 'epochs': 20, 'batch_size': 16, 'batch_size_eval': 8, 'optimizer': 'adamax', 'grad_clipping': 0.0, 'global_grad_clipping': 1.0, 'weight_decay': 0, 'learning_rate': 5e-05, 'momentum': 0, 'warmup': 0.1, 'warmup_schedule': 'warmup_linear', 'adam_eps': 1e-06, 'vb_dropout': True, 'dropout_p': 0.1, 'dropout_w': 0.0, 'bert_dropout_p': 0.1, 'model_ckpt': 'checkpoints/model_0.pt', 'resume': False, 'have_lr_scheduler': True, 'multi_step_lr': '10,20,30', 'lr_gamma': 0.5, 'scheduler_type': 'ms', 'output_dir': 'checkpoints/2021-01-05T1432_bert-base-uncased_mrpc', 'seed': 2018, 'grad_accumulation_step': 1, 'fp16': False, 'fp16_opt_level': 'O1', 'adv_train': False, 'adv_opt': 0, 'adv_norm_level': 0, 'adv_p_norm': 'inf', 'adv_alpha': 1, 'adv_k': 1, 'adv_step_size': 0.001, 'adv_noise_var': 1e-05, 'adv_epsilon': 1e-06, 'loss_pred': True, 'collect_uncertainty': None, 'collect_topk': 0.1, 'load_ranked_data': None, 'mc_dropout': 0, 'finetune': False, 'encode_mode': False, 'task_def_list': [{'self': '{}', 'label_vocab': 'None', 'n_class': '2', 'data_type': '<DataFormat.PremiseAndOneHypothesis: 2>', 'task_type': '<TaskType.Classification: 1>', 'metric_meta': '(<Metric.ACC: 0>, <Metric.F1: 1>)', 'split_names': "['train', 'dev', 'test']", 'enable_san': 'False', 'dropout_p': 'None', 'loss': '<LossCriterion.CeCriterion: 0>', 'kd_loss': '<LossCriterion.MseCriterion: 1>', 'adv_loss': '<LossCriterion.SymKlCriterion: 7>', '__class__': "<class 'experiments.exp_def.TaskDef'>"}]}
01/05/2021 02:32:45 ####################
01/05/2021 02:32:45 ############# Gradient Accumulation Info #############
01/05/2021 02:32:45 number of step: 4600
01/05/2021 02:32:45 number of grad grad_accumulation step: 1
01/05/2021 02:32:45 adjusted number of step: 4600
01/05/2021 02:32:45 ############# Gradient Accumulation Info #############
01/05/2021 02:33:01
############# Model Arch of MT-DNN #############
SANBertNetwork(
(dropout_list): ModuleList(
(0): DropoutWrapper()
)
(bert): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(30522, 768, padding_idx=0)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(6): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(7): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(8): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(9): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(10): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(11): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
(loss_pred_fc): Linear(in_features=768, out_features=1, bias=True)
(scoring_list): ModuleList(
(0): Linear(in_features=768, out_features=2, bias=True)
)
)
01/05/2021 02:33:01 Total number of params: 109484547
01/05/2021 02:33:01 At epoch 0
01/05/2021 02:33:03 Task [ 0] updates[ 1] train loss[1.56808] remaining[0:05:48]
01/05/2021 02:33:45 Task mrpc -- epoch 0 -- Dev ACC: 68.382
01/05/2021 02:33:45 Task mrpc -- epoch 0 -- Dev F1: 81.223
01/05/2021 02:33:49 [new test scores saved.]
01/05/2021 02:33:54 At epoch 1
01/05/2021 02:34:34 Task mrpc -- epoch 1 -- Dev ACC: 74.020
01/05/2021 02:34:34 Task mrpc -- epoch 1 -- Dev F1: 79.924
01/05/2021 02:34:38 [new test scores saved.]
01/05/2021 02:34:42 At epoch 2
01/05/2021 02:34:49 Task [ 0] updates[ 500] train loss[1.39559] remaining[0:00:29]
01/05/2021 02:35:19 Task mrpc -- epoch 2 -- Dev ACC: 81.618
01/05/2021 02:35:19 Task mrpc -- epoch 2 -- Dev F1: 86.339
01/05/2021 02:35:24 [new test scores saved.]
01/05/2021 02:35:35 At epoch 3
01/05/2021 02:36:17 Task mrpc -- epoch 3 -- Dev ACC: 84.804
01/05/2021 02:36:17 Task mrpc -- epoch 3 -- Dev F1: 88.809
01/05/2021 02:36:22 [new test scores saved.]
01/05/2021 02:36:26 At epoch 4
01/05/2021 02:36:41 Task [ 0] updates[ 1000] train loss[1.08183] remaining[0:00:26]
01/05/2021 02:37:09 Task mrpc -- epoch 4 -- Dev ACC: 84.314
01/05/2021 02:37:09 Task mrpc -- epoch 4 -- Dev F1: 88.811
01/05/2021 02:37:13 [new test scores saved.]
01/05/2021 02:37:17 At epoch 5
01/05/2021 02:37:59 Task mrpc -- epoch 5 -- Dev ACC: 84.069
01/05/2021 02:37:59 Task mrpc -- epoch 5 -- Dev F1: 88.246
01/05/2021 02:38:03 [new test scores saved.]
01/05/2021 02:38:07 At epoch 6
01/05/2021 02:38:29 Task [ 0] updates[ 1500] train loss[0.88479] remaining[0:00:19]
01/05/2021 02:38:49 Task mrpc -- epoch 6 -- Dev ACC: 80.882
01/05/2021 02:38:49 Task mrpc -- epoch 6 -- Dev F1: 86.780
01/05/2021 02:38:54 [new test scores saved.]
01/05/2021 02:38:58 At epoch 7
01/05/2021 02:39:41 Task mrpc -- epoch 7 -- Dev ACC: 83.333
01/05/2021 02:39:41 Task mrpc -- epoch 7 -- Dev F1: 88.396
01/05/2021 02:39:45 [new test scores saved.]
01/05/2021 02:39:49 At epoch 8
01/05/2021 02:40:18 Task [ 0] updates[ 2000] train loss[0.74605] remaining[0:00:12]
01/05/2021 02:40:31 Task mrpc -- epoch 8 -- Dev ACC: 83.578
01/05/2021 02:40:31 Task mrpc -- epoch 8 -- Dev F1: 88.428
01/05/2021 02:40:36 [new test scores saved.]
01/05/2021 02:40:40 At epoch 9
01/05/2021 02:41:22 Task mrpc -- epoch 9 -- Dev ACC: 85.049
01/05/2021 02:41:22 Task mrpc -- epoch 9 -- Dev F1: 89.317
01/05/2021 02:41:27 [new test scores saved.]
01/05/2021 02:41:31 At epoch 10
01/05/2021 02:42:02 Task [ 0] updates[ 2500] train loss[0.66090] remaining[0:00:04]
01/05/2021 02:42:07 Task mrpc -- epoch 10 -- Dev ACC: 83.333
01/05/2021 02:42:07 Task mrpc -- epoch 10 -- Dev F1: 88.112
01/05/2021 02:42:11 [new test scores saved.]
01/05/2021 02:42:15 At epoch 11
01/05/2021 02:42:56 Task mrpc -- epoch 11 -- Dev ACC: 83.824
01/05/2021 02:42:56 Task mrpc -- epoch 11 -- Dev F1: 88.339
01/05/2021 02:43:01 [new test scores saved.]
01/05/2021 02:43:05 At epoch 12
01/05/2021 02:43:47 Task mrpc -- epoch 12 -- Dev ACC: 83.088
01/05/2021 02:43:47 Task mrpc -- epoch 12 -- Dev F1: 88.042
01/05/2021 02:43:50 [new test scores saved.]
01/05/2021 02:43:54 At epoch 13
01/05/2021 02:43:56 Task [ 0] updates[ 3000] train loss[0.59217] remaining[0:00:25]
01/05/2021 02:44:22 Task mrpc -- epoch 13 -- Dev ACC: 85.294
01/05/2021 02:44:22 Task mrpc -- epoch 13 -- Dev F1: 89.761
01/05/2021 02:44:25 [new test scores saved.]
01/05/2021 02:44:33 At epoch 14
01/05/2021 02:45:04 Task mrpc -- epoch 14 -- Dev ACC: 83.824
01/05/2021 02:45:04 Task mrpc -- epoch 14 -- Dev F1: 88.660
01/05/2021 02:45:06 [new test scores saved.]
01/05/2021 02:45:11 At epoch 15
01/05/2021 02:45:16 Task [ 0] updates[ 3500] train loss[0.53450] remaining[0:00:20]
01/05/2021 02:45:38 Task mrpc -- epoch 15 -- Dev ACC: 83.824
01/05/2021 02:45:38 Task mrpc -- epoch 15 -- Dev F1: 89.037
01/05/2021 02:45:41 [new test scores saved.]
01/05/2021 02:45:45 At epoch 16
01/05/2021 02:46:12 Task mrpc -- epoch 16 -- Dev ACC: 84.804
01/05/2021 02:46:12 Task mrpc -- epoch 16 -- Dev F1: 89.161
01/05/2021 02:46:15 [new test scores saved.]
01/05/2021 02:46:19 At epoch 17
01/05/2021 02:46:29 Task [ 0] updates[ 4000] train loss[0.49609] remaining[0:00:16]
01/05/2021 02:46:46 Task mrpc -- epoch 17 -- Dev ACC: 83.824
01/05/2021 02:46:46 Task mrpc -- epoch 17 -- Dev F1: 88.737
01/05/2021 02:46:49 [new test scores saved.]
01/05/2021 02:46:53 At epoch 18
01/05/2021 02:47:20 Task mrpc -- epoch 18 -- Dev ACC: 84.559
01/05/2021 02:47:20 Task mrpc -- epoch 18 -- Dev F1: 89.157
01/05/2021 02:47:23 [new test scores saved.]
01/05/2021 02:47:27 At epoch 19
01/05/2021 02:47:42 Task [ 0] updates[ 4500] train loss[0.46235] remaining[0:00:11]
01/05/2021 02:47:55 Task mrpc -- epoch 19 -- Dev ACC: 84.559
01/05/2021 02:47:55 Task mrpc -- epoch 19 -- Dev F1: 89.157
01/05/2021 02:47:58 [new test scores saved.]