Skip to content

Latest commit

 

History

History
117 lines (97 loc) · 2.88 KB

merge_sort.md

File metadata and controls

117 lines (97 loc) · 2.88 KB

Merge Sort - 归并排序

核心:将两个有序对数组归并成一个更大的有序数组。通常做法为递归排序,并将两个不同的有序数组归并到第三个数组中。

先来看看动图,归并排序是一种典型的分治应用。

Merge Sort

Python

#!/usr/bin/env python


class Sort:
    def mergeSort(self, alist):
        if len(alist) <= 1:
            return alist

        mid = len(alist) / 2
        left = self.mergeSort(alist[:mid])
        print("left = " + str(left))
        right = self.mergeSort(alist[mid:])
        print("right = " + str(right))
        return self.mergeSortedArray(left, right)

    #@param A and B: sorted integer array A and B.
    #@return: A new sorted integer array
    def mergeSortedArray(self, A, B):
        sortedArray = []
        l = 0
        r = 0
        while l < len(A) and r < len(B):
            if A[l] < B[r]:
                sortedArray.append(A[l])
                l += 1
            else:
                sortedArray.append(B[r])
                r += 1
        sortedArray += A[l:]
        sortedArray += B[r:]

        return sortedArray

unsortedArray = [6, 5, 3, 1, 8, 7, 2, 4]
merge_sort = Sort()
print(merge_sort.mergeSort(unsortedArray))

原地归并

Java

public class MergeSort {
	public static void main(String[] args) {
		int unsortedArray[] = new int[]{6, 5, 3, 1, 8, 7, 2, 4};
		mergeSort(unsortedArray);
		System.out.println("After sort: ");
		for (int item : unsortedArray) {
			System.out.print(item + " ");
		}
	}

	private static void merge(int[] array, int low, int mid, int high) {
		int[] helper = new int[array.length];
		// copy array to helper
		for (int k = low; k <= high; k++) {
			helper[k] = array[k];
		}
		// merge array[low...mid] and array[mid + 1...high]
		int i = low, j = mid + 1;
		for (int k = low; k <= high; k++) {
			// k means current location
			if (i > mid) {
			// no item in left part
				array[k] = helper[j];
				j++;
			} else if (j > high) {
			// no item in right part
				array[k] = helper[i];
				i++;
			} else if (helper[i] > helper[j]) {
			// get smaller item in the right side
				array[k] = helper[j];
				j++;
			} else {
			// get smaller item in the left side
				array[k] = helper[i];
				i++;
			}
		}
	}

	public static void sort(int[] array, int low, int high) {
		if (high <= low) return;
		int mid = low + (high - low) / 2;
		sort(array, low, mid);
		sort(array, mid + 1, high);
		merge(array, low, mid, high);
		for (int item : array) {
			System.out.print(item + " ");
		}
		System.out.println();
	}

	public static void mergeSort(int[] array) {
		sort(array, 0, array.length - 1);
	}
}

时间复杂度为 $$O(N \log N)$$, 使用了等长的辅助数组,空间复杂度为 $$O(N)$$

Reference

  • Mergesort - Robert Sedgewick 的大作,非常清晰。