forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
create_xlnet_pretraining_data.py
721 lines (602 loc) · 23.6 KB
/
create_xlnet_pretraining_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Create LM TF examples for XLNet."""
import dataclasses
import json
import math
import os
import random
from typing import Iterable, Mapping, List, Optional, Tuple
import unicodedata
# Import libraries
from absl import app
from absl import flags
from absl import logging
import numpy as np
import tensorflow as tf
from official.nlp.tools import tokenization
special_symbols = {
"<unk>": 0,
"<s>": 1,
"</s>": 2,
"<cls>": 3,
"<sep>": 4,
"<pad>": 5,
"<mask>": 6,
"<eod>": 7,
"<eop>": 8,
}
FLAGS = flags.FLAGS
flags.DEFINE_integer("seq_length", 512,
help="Sequence length.")
flags.DEFINE_integer("reuse_length", 256,
help="Number of token that can be reused as memory. "
"Could be half of `seq_len`.")
flags.DEFINE_string("input_file", None,
"Input raw text file (or comma-separated list of files).")
flags.DEFINE_string(
"save_dir", None,
"Directory for saving processed data.")
flags.DEFINE_string("sp_model_file", "",
"The path to the model used by sentence piece tokenizer.")
flags.DEFINE_bool("use_eod_token", True,
"Whether or not to include EOD tokens.")
flags.DEFINE_bool("bi_data", True, "Whether or not to use bi-directional data.")
flags.DEFINE_bool(
"do_lower_case", True,
"Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")
flags.DEFINE_integer("per_host_batch_size", 32, "Batch size per host.")
flags.DEFINE_integer("num_cores_per_host", 16,
"The number of (TPU) cores per host.")
flags.DEFINE_string("prefix", "", "Filename prefix.")
flags.DEFINE_string("suffix", "", "Filename suffix.")
flags.DEFINE_integer("task_id", None,
"The id of the current task.")
flags.DEFINE_integer("num_tasks", None,
"The total number of tasks.")
flags.DEFINE_integer("num_passes", 1, "The number of times to run the script.")
@dataclasses.dataclass
class TrainingInstance:
"""Representation of a single XLNet Pretraining instance."""
data: Iterable[int]
segment_ids: Iterable[int]
boundary_indices: Iterable[int]
label: int
def to_feature(self) -> Mapping[str, tf.train.Feature]:
feat = lambda x: tf.train.Feature(int64_list=tf.train.Int64List(value=x))
return dict(
input_word_ids=feat(self.data),
input_type_ids=feat(self.segment_ids),
boundary_indices=feat(self.boundary_indices),
label=feat([self.label]))
def to_example(self) -> tf.train.Example:
return tf.train.Example(
features=tf.train.Features(feature=self.to_feature()))
def __str__(self):
def seq_to_str(seq):
return " ".join([str(x) for x in seq])
s = ""
s += "tokens: %s\n" % seq_to_str(self.data)
s += "segment_ids: %s\n" % seq_to_str(self.segment_ids)
s += "boundary_indices: %s\n" % seq_to_str(self.boundary_indices)
s += "label: %s\n" % self.label
s += "\n"
return s
def __repr__(self):
return self.__str__()
def _preprocess_line(line: str, do_lower_case: bool = False) -> str:
"""Preprocesses an individual raw text line.
This function will:
- Remove extraneous spaces.
- Replace `` with ", and '' with ".
- Replaces accents.
- Applies lower casing.
Args:
line: The input line to preprocess.
do_lower_case: Whether or not to lower case the text.
Returns:
The preprocessed line.
"""
line = " ".join(line.split())
line = line.replace("``", "\"").replace("''", "\"")
# Replace accents.
line = unicodedata.normalize("NFKD", line)
line = "".join([c for c in line if not unicodedata.combining(c)])
if do_lower_case:
line = line.lower()
return line
def preprocess_and_tokenize_input_files(
input_files: Iterable[str],
tokenizer: tokenization.FullSentencePieceTokenizer,
use_eod: bool = True,
do_lower_case: bool = False,
log_example_freq: int = 100000) -> List[Tuple[np.array, np.array]]:
"""Preprocesses and encodes raw text from input files.
This function preprocesses raw text and encodes them into tokens using a
`SentencePieceModel` tokenization method. This also provides the sentence
indicator for each token.
Args:
input_files: The list of input file names.
tokenizer: The SentencePiece tokenizer that has the attribute `sp_model`.
use_eod: Whether or not to use an EOD indicator. If `False`, then EOD is
not included.
do_lower_case: Whether or not to apply lower casing during raw text
preprocessing.
log_example_freq: The optional field for how many lines to process before
emitting an info log.
Returns:
The preprocessed list. Each entry in the list is a tuple consisting of
the token IDs and the sentence IDs.
"""
all_data = []
eod_symbol = special_symbols["<eod>"]
total_number_of_lines = 0
# Input file format:
# (1) One sentence per line. These should ideally be actual sentences, not
# entire paragraphs or arbitrary spans of text. (Because we use the
# sentence boundaries for the "next sentence prediction" task).
# (2) Blank lines between documents. Document boundaries are needed so
# that the "next sentence prediction" task doesn't span between documents.
for input_file in input_files:
line_count = 0
logging.info("Preprocessing %s", input_file)
all_tokens = []
all_sentence_ids = []
sentence_id = True
with tf.io.gfile.GFile(input_file, "rb") as reader:
while True:
line = tokenization.convert_to_unicode(reader.readline())
if not line:
break
line_count += 1
if line_count % log_example_freq == 0:
logging.info("Loading line %d", line_count)
line = line.strip()
if not line:
if use_eod:
token_ids = [eod_symbol]
sentence_id = not sentence_id
else:
continue
else:
preprocessed_line = _preprocess_line(
line=line, do_lower_case=do_lower_case)
token_ids = tokenization.encode_ids(
sp_model=tokenizer.sp_model, text=preprocessed_line)
all_tokens.extend(token_ids)
all_sentence_ids.extend([sentence_id] * len(token_ids))
sentence_id = not sentence_id
logging.info("Finished processing %s. Number of lines: %d",
input_file, line_count)
if line_count == 0:
continue
total_number_of_lines += line_count
all_tokens = np.array(all_tokens, dtype=np.int64)
all_sentence_ids = np.array(all_sentence_ids, dtype=np.bool)
all_data.append((all_tokens, all_sentence_ids))
logging.info("Completed text preprocessing. Total number of lines: %d",
total_number_of_lines)
return all_data
def _reshape_to_batch_dimensions(
tokens: np.array,
sentence_ids: np.array,
per_host_batch_size: int) -> Tuple[np.array, np.array]:
"""Truncates and reshapes input data with a batch major dimension.
Args:
tokens: The input token ids. This should have the same shape as
`sentence_ids`.
sentence_ids: The input sentence ids. This should have the same shape as
`token_ids`.
per_host_batch_size: The target per-host batch size.
Returns:
The tuple of reshaped tokens and sentence_ids.
"""
num_steps = len(tokens) // per_host_batch_size
truncated_data_length = num_steps * per_host_batch_size
logging.info("per_host_batch_size: %d", per_host_batch_size)
logging.info("num_steps: %d", num_steps)
def truncate_and_reshape(a):
return a[:truncated_data_length].reshape((per_host_batch_size, num_steps))
return (truncate_and_reshape(tokens), truncate_and_reshape(sentence_ids))
def _create_a_and_b_segments(
tokens: np.array,
sentence_ids: np.array,
begin_index: int,
total_length: int,
no_cut_probability: float = 0.5):
"""Splits segments A and B from a single instance of tokens and sentence ids.
Args:
tokens: The 1D input token ids. This represents an individual entry within a
batch.
sentence_ids: The 1D input sentence ids. This represents an indivdual entry
within a batch. This should be the same length as `tokens`.
begin_index: The reference beginning index to split data.
total_length: The target combined length of segments A and B.
no_cut_probability: The probability of not cutting a segment despite
a cut possibly existing.
Returns:
A tuple consisting of A data, B data, and label.
"""
data_length = tokens.shape[0]
if begin_index + total_length >= data_length:
logging.info("[_create_segments]: begin_index %d + total_length %d >= "
"data_length %d", begin_index, total_length, data_length)
return None
end_index = begin_index + 1
cut_indices = []
# Identify all indices where sentence IDs change from one to the next.
while end_index < data_length:
if sentence_ids[end_index] != sentence_ids[end_index - 1]:
if end_index - begin_index >= total_length:
break
cut_indices.append(end_index)
end_index += 1
a_begin = begin_index
if not cut_indices or random.random() < no_cut_probability:
# Segments A and B are contained within the same sentence.
label = 0
if not cut_indices:
a_end = end_index
else:
a_end = random.choice(cut_indices)
b_length = max(1, total_length - (a_end - a_begin))
b_begin = random.randint(0, data_length - 1 - b_length)
b_end = b_begin + b_length
while b_begin > 0 and sentence_ids[b_begin - 1] == sentence_ids[b_begin]:
b_begin -= 1
while (b_end < data_length - 1 and
sentence_ids[b_end - 1] == sentence_ids[b_end]):
b_end += 1
else:
# Segments A and B are different sentences.
label = 1
a_end = random.choice(cut_indices)
b_begin = a_end
b_end = end_index
while a_end - a_begin + b_end - b_begin > total_length:
if a_end - a_begin > b_end - b_begin:
# Delete only the right side for the LM objective.
a_end -= 1
else:
b_end -= 1
if a_end >= data_length or b_end >= data_length:
logging.info("[_create_segments]: a_end %d or b_end %d >= data_length %d",
a_end, b_end, data_length)
return None
a_data = tokens[a_begin: a_end]
b_data = tokens[b_begin: b_end]
return a_data, b_data, label
def _is_functional_piece(piece: str) -> bool:
return piece != "<unk>" and piece.startswith("<") and piece.endswith(">")
def _is_start_piece(piece: str) -> bool:
special_pieces = set(list('!"#$%&\"()*+,-./:;?@[\\]^_`{|}~'))
if (piece.startswith("▁") or piece in special_pieces):
return True
else:
return False
def _get_boundary_indices(
data: np.array,
tokenizer: tokenization.FullSentencePieceTokenizer) -> np.array:
"""Gets the boundary indices of whole words."""
seq_length = len(data)
boundary_indices = []
for index, piece in enumerate(tokenizer.convert_ids_to_tokens(data.tolist())):
if _is_start_piece(piece) and not _is_functional_piece(piece):
boundary_indices.append(index)
boundary_indices.append(seq_length)
return boundary_indices
def _convert_tokens_to_instances(
tokens: np.array,
sentence_ids: np.array,
per_host_batch_size: int,
seq_length: int,
reuse_length: int,
bi_data: bool,
tokenizer: tokenization.FullSentencePieceTokenizer,
num_cores_per_host: int = 0,
logging_frequency: int = 500) -> List[TrainingInstance]:
"""Converts tokens and sentence IDs into individual training instances.
The format of data in the XLNet pretraining task is very similar to the
BERT pretraining task. Two segments A and B are randomly sampled, and the
contatenation of A and B into a single sequence is used to perform
language modeling.
To create an XLNet Pretraining instance from a single long sequence, S:
- Create a segment of length `reuse_length`. This first segment represents
past tokens. During modeling, this segment is used to cache obtained
content representations for the segment recurrence mechanism.
- Similar to BERT, create a segment of length `seq_length` - `reuse_length`
composed of A and B segments.
For XLNet, the order is "A", "SEP", "B", "SEP", "CLS".
Args:
tokens: All tokens concatenated into a single list.
sentence_ids: All sentence IDs concatenated into a single list.
per_host_batch_size: The target batch size per host.
seq_length: The max sequence length.
reuse_length: The number of tokens to use from the previous segment.
bi_data: Whether or not to use bidirectional data.
tokenizer: The SentencePiece tokenizer that has the attribute `sp_model`.
num_cores_per_host: The number of cores per host. This is required if
`bi_data` = `True`.
logging_frequency: The frequency at which to log status updates.
Returns:
A list of `TrainingInstance` objects.
"""
instances = []
per_core_batch_size = (per_host_batch_size // num_cores_per_host
if bi_data else None)
if bi_data:
logging.info("Bi-directional data enabled.")
assert per_host_batch_size % (2 * num_cores_per_host) == 0
forward_tokens, forward_sentence_ids = _reshape_to_batch_dimensions(
tokens=tokens,
sentence_ids=sentence_ids,
per_host_batch_size=per_host_batch_size // 2)
forward_data_shape = (num_cores_per_host, 1, per_core_batch_size // 2, -1)
forward_tokens = forward_tokens.reshape(forward_data_shape)
forward_sentence_ids = forward_sentence_ids.reshape(forward_data_shape)
backwards_tokens = forward_tokens[:, :, :, ::-1]
backwards_sentence_ids = forward_sentence_ids[:, :, :, ::-1]
tokens = np.concatenate([forward_tokens, backwards_tokens], 1).reshape(
per_host_batch_size, -1)
sentence_ids = np.concatenate(
[forward_sentence_ids, backwards_sentence_ids]).reshape(
per_host_batch_size, -1)
else:
logging.info("Bi-directional data disabled.")
tokens, sentence_ids = _reshape_to_batch_dimensions(
tokens=tokens,
sentence_ids=sentence_ids,
per_host_batch_size=per_host_batch_size)
logging.info("Tokens shape: %s", tokens.shape)
data_length = tokens.shape[1]
sep = np.array([special_symbols["<sep>"]], dtype=np.int64)
cls = np.array([special_symbols["<cls>"]], dtype=np.int64)
# 2 sep, 1 cls
num_special_tokens = 3
data_index = 0
batch_number = 0
step_size = reuse_length if reuse_length else seq_length
num_batches = math.ceil(data_length / step_size)
while data_index + seq_length <= data_length:
if batch_number % logging_frequency == 0:
logging.info("Processing batch %d of %d", batch_number, num_batches)
for batch_index in range(per_host_batch_size):
previous_segment_tokens = tokens[
batch_index, data_index: data_index + reuse_length]
results = _create_a_and_b_segments(
tokens=tokens[batch_index],
sentence_ids=sentence_ids[batch_index],
begin_index=data_index + reuse_length,
total_length=seq_length - reuse_length - num_special_tokens)
if results is None:
logging.info("Stopping at data index: %d", data_index)
break
a_data, b_data, label = results
data = np.concatenate(
[previous_segment_tokens, a_data, sep, b_data, sep, cls])
a_length = a_data.shape[0]
b_length = b_data.shape[0]
segment_ids = ([0] * (reuse_length + a_length) + [0]
+ [1] * b_length + [1] + [2])
boundary_indices = _get_boundary_indices(tokenizer=tokenizer,
data=data)
assert len(data) == seq_length
assert len(segment_ids) == seq_length
assert len(boundary_indices) > 0 # pylint: disable=g-explicit-length-test
instances.append(TrainingInstance(
data=data,
segment_ids=segment_ids,
boundary_indices=boundary_indices,
label=label))
batch_number += 1
data_index += step_size
return instances
def write_instances_to_tfrecord(
instances: Iterable[TrainingInstance],
save_path: str):
"""Writes instances to TFRecord."""
record_writer = tf.io.TFRecordWriter(save_path)
logging.info("Start writing to %s.", save_path)
for i, instance in enumerate(instances):
if i < 5:
logging.info("Instance %d: %s", i, str(instance))
record_writer.write(instance.to_example().SerializeToString())
record_writer.close()
logging.info("Done writing %s.", save_path)
def shuffle_and_combine_preprocessed_data(
all_data: List[Tuple[np.array, np.array]]) -> Tuple[np.array, np.array]:
"""Shuffles and combines preprocessed token/sentence IDs from documents."""
document_permutation = np.random.permutation(len(all_data))
previous_sentence_id = None
all_tokens, all_sentence_ids = [], []
for document_index in document_permutation:
tokens, sentence_ids = all_data[document_index]
# pylint: disable=g-explicit-length-test
if len(tokens) == 0:
continue
if (previous_sentence_id is not None and
sentence_ids[0] == previous_sentence_id):
sentence_ids = np.logical_not(sentence_ids)
all_tokens.append(tokens)
all_sentence_ids.append(sentence_ids)
previous_sentence_id = sentence_ids[-1]
return np.concatenate(all_tokens), np.concatenate(all_sentence_ids)
def get_tfrecord_name(
per_host_batch_size: int,
num_cores_per_host: int,
seq_length: int,
bi_data: bool,
reuse_length: int,
do_lower_case: bool,
use_eod_token: bool,
prefix: str = "",
suffix: str = "",
pass_id: int = 0,
num_passes: int = 1,
task_id: int = None,
num_tasks: int = None) -> str:
"""Formats the resulting TFRecord name based on provided inputs."""
components = []
if prefix:
components.append(prefix)
components.append("seqlen-{}".format(seq_length))
if reuse_length == 0:
components.append("memless")
else:
components.append("reuse-{}".format(reuse_length))
components.append("bs-{}".format(per_host_batch_size))
components.append("cores-{}".format(num_cores_per_host))
if do_lower_case:
components.append("uncased")
else:
components.append("cased")
if use_eod_token:
components.append("eod")
if bi_data:
components.append("bi")
else:
components.append("uni")
if suffix:
components.append(suffix)
s = "_".join(components) + ".tfrecord"
if num_passes == 1 and task_id is None:
return s
if task_id is None:
num_tasks = 1
task_id = 0
current_shard = task_id * num_passes + pass_id
total_shards = num_tasks * num_passes
return s + "-{}-of-{}".format(current_shard, total_shards)
def create_tfrecords(
tokenizer: tokenization.FullSentencePieceTokenizer,
input_file_or_files: str,
use_eod_token: bool,
do_lower_case: bool,
per_host_batch_size: int,
seq_length: int,
reuse_length: int,
bi_data: bool,
num_cores_per_host: int,
save_dir: str,
prefix: str = "",
suffix: str = "",
num_tasks: Optional[int] = None,
task_id: Optional[int] = None,
num_passes: int = 1):
"""Runs the end-to-end preprocessing pipeline."""
logging.info("Input configuration:")
logging.info("input file(s): %s", input_file_or_files)
logging.info("use_eod_token: %s", use_eod_token)
logging.info("do_lower_case: %s", do_lower_case)
logging.info("per_host_batch_size: %d", per_host_batch_size)
logging.info("seq_length: %d", seq_length)
logging.info("reuse_length: %d", reuse_length)
logging.info("bi_data: %s", bi_data)
logging.info("num_cores_per_host: %d", num_cores_per_host)
logging.info("save_dir: %s", save_dir)
if task_id is not None and num_tasks is not None:
logging.info("task_id: %d", task_id)
logging.info("num_tasks: %d", num_tasks)
input_files = []
for input_pattern in input_file_or_files.split(","):
input_files.extend(tf.io.gfile.glob(input_pattern))
logging.info("*** Reading from input files ***")
for input_file in input_files:
logging.info(" %s", input_file)
logging.info("Shuffling the files with a fixed random seed.")
np.random.shuffle(input_files)
if num_tasks is not None:
assert task_id is not None
logging.info("Total number of input files: %d", len(input_files))
logging.info("Splitting into %d shards of %d files each.",
num_tasks, len(input_files) // num_tasks)
input_files = input_files[task_id::num_tasks]
all_data = preprocess_and_tokenize_input_files(
input_files=input_files,
tokenizer=tokenizer,
use_eod=use_eod_token,
do_lower_case=do_lower_case)
for pass_id in range(num_passes):
logging.info("Beginning pass %d of %d", pass_id, num_passes)
tokens, sentence_ids = shuffle_and_combine_preprocessed_data(all_data)
assert len(tokens) == len(sentence_ids)
filename = get_tfrecord_name(
per_host_batch_size=per_host_batch_size,
num_cores_per_host=num_cores_per_host,
seq_length=seq_length,
bi_data=bi_data,
use_eod_token=use_eod_token,
reuse_length=reuse_length,
do_lower_case=do_lower_case,
prefix=prefix,
suffix=suffix,
pass_id=pass_id,
num_passes=num_passes,
num_tasks=num_tasks,
task_id=task_id)
save_path = os.path.join(save_dir, filename)
if os.path.exists(save_path):
# If the path already exists, then we were probably preempted but
# previously wrote this file.
logging.info("%s already exists, skipping this batch.", save_path)
else:
instances = _convert_tokens_to_instances(
tokenizer=tokenizer,
tokens=tokens,
sentence_ids=sentence_ids,
per_host_batch_size=per_host_batch_size,
seq_length=seq_length,
reuse_length=reuse_length,
bi_data=bi_data,
num_cores_per_host=num_cores_per_host)
write_instances_to_tfrecord(instances=instances, save_path=save_path)
if task_id is None or task_id == 0:
corpus_info = {
"vocab_size": 32000,
"per_host_batch_size": per_host_batch_size,
"num_cores_per_host": num_cores_per_host,
"seq_length": seq_length,
"reuse_length": reuse_length,
"do_lower_case": do_lower_case,
"bi_data": bi_data,
"use_eod_token": use_eod_token,
}
corpus_fname = os.path.basename(filename) + ".json"
corpus_destination = os.path.join(save_dir, corpus_fname)
logging.info("Saving corpus info to %s", corpus_destination)
with tf.io.gfile.GFile(corpus_destination, "w") as fp:
json.dump(corpus_info, fp)
def main(_):
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
create_tfrecords(
tokenizer=tokenizer,
input_file_or_files=FLAGS.input_file,
use_eod_token=FLAGS.use_eod_token,
do_lower_case=FLAGS.do_lower_case,
per_host_batch_size=FLAGS.per_host_batch_size,
seq_length=FLAGS.seq_length,
reuse_length=FLAGS.reuse_length,
bi_data=FLAGS.bi_data,
num_cores_per_host=FLAGS.num_cores_per_host,
save_dir=FLAGS.save_dir,
prefix=FLAGS.prefix,
suffix=FLAGS.suffix,
num_tasks=FLAGS.num_tasks,
task_id=FLAGS.task_id,
num_passes=FLAGS.num_passes)
if __name__ == "__main__":
np.random.seed(0)
logging.set_verbosity(logging.INFO)
app.run(main)