-
Notifications
You must be signed in to change notification settings - Fork 36
/
test.py
executable file
·225 lines (185 loc) · 10.2 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# coding=utf-8
import os
import time
import string
import argparse
import torch
import torch.backends.cudnn as cudnn
import torch.utils.data
import numpy as np
from nltk.metrics.distance import edit_distance
from utils.utils import CTCLabelConverter, AttnLabelConverter, Averager
from utils.dataset import hierarchical_dataset, AlignCollate
from model import Model
def benchmark_all_eval(model, criterion, converter, opt, calculate_infer_time=False):
""" evaluation with 10 benchmark evaluation datasets """
# The evaluation datasets, dataset order is same with Table 1 in our paper.
eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857',
'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80']
if calculate_infer_time:
evaluation_batch_size = 1 # batch_size should be 1 to calculate the GPU inference time per image.
else:
evaluation_batch_size = opt.batch_size
list_accuracy = []
total_forward_time = 0
total_evaluation_data_number = 0
total_correct_number = 0
print('-' * 80)
for eval_data in eval_data_list:
eval_data_path = os.path.join(opt.eval_data, eval_data)
AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
eval_data = hierarchical_dataset(root=eval_data_path, opt=opt)
evaluation_loader = torch.utils.data.DataLoader(
eval_data, batch_size=evaluation_batch_size,
shuffle=False,
num_workers=int(opt.workers),
collate_fn=AlignCollate_evaluation, pin_memory=True)
_, accuracy_by_best_model, norm_ED_by_best_model, _, _, infer_time, length_of_data = validation(
model, criterion, evaluation_loader, converter, opt)
list_accuracy.append(f'{accuracy_by_best_model:0.3f}')
total_forward_time += infer_time
total_evaluation_data_number += len(eval_data)
total_correct_number += accuracy_by_best_model * length_of_data
print('Acc %0.3f\t normalized_ED %0.3f' % (accuracy_by_best_model, norm_ED_by_best_model))
print('-' * 80)
averaged_forward_time = total_forward_time / total_evaluation_data_number * 1000
total_accuracy = total_correct_number / total_evaluation_data_number
params_num = sum([np.prod(p.size()) for p in model.parameters()])
evaluation_log = 'accuracy: '
for name, accuracy in zip(eval_data_list, list_accuracy):
evaluation_log += f'{name}: {accuracy}\t'
evaluation_log += f'total_accuracy: {total_accuracy:0.3f}\t'
evaluation_log += f'averaged_infer_time: {averaged_forward_time:0.3f}\t# parameters: {params_num/1e6:0.3f}'
print(evaluation_log)
with open(f'./result/{opt.experiment_name}/log_all_evaluation.txt', 'a') as log:
log.write(evaluation_log + '\n')
return None
def validation(model, criterion, evaluation_loader, converter, opt):
""" validation or evaluation """
for p in model.parameters():
p.requires_grad = False
n_correct = 0
norm_ED = 0
length_of_data = 0
infer_time = 0
valid_loss_avg = Averager()
for i, (image_tensors, labels) in enumerate(evaluation_loader):
batch_size = image_tensors.size(0)
length_of_data = length_of_data + batch_size
with torch.no_grad():
image = image_tensors.cuda()
# For max length prediction
length_for_pred = torch.cuda.IntTensor([opt.batch_max_length] * batch_size)
text_for_pred = torch.cuda.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0)
text_for_loss, length_for_loss = converter.encode(labels)
start_time = time.time()
if 'CTC' in opt.Prediction:
preds = model(image, text_for_pred).log_softmax(2)
forward_time = time.time() - start_time
# Calculate evaluation loss for CTC deocder.
preds_size = torch.IntTensor([preds.size(1)] * batch_size)
preds = preds.permute(1, 0, 2) # to use CTCloss format
cost = criterion(preds, text_for_loss, preds_size, length_for_loss)
# Select max probabilty (greedy decoding) then decode index to character
_, preds_index = preds.max(2)
preds_index = preds_index.transpose(1, 0).contiguous().view(-1)
preds_str = converter.decode(preds_index.data, preds_size.data)
else:
preds = model(image, text_for_pred, is_train=False)
forward_time = time.time() - start_time
preds = preds[:, :text_for_loss.shape[1] - 1, :]
target = text_for_loss[:, 1:] # without [GO] Symbol
cost = criterion(preds.contiguous().view(-1, preds.shape[-1]), target.contiguous().view(-1))
# select max probabilty (greedy decoding) then decode index to character
_, preds_index = preds.max(2)
preds_str = converter.decode(preds_index, length_for_pred)
labels = converter.decode(text_for_loss[:, 1:], length_for_loss)
infer_time += forward_time
valid_loss_avg.add(cost)
# calculate accuracy.
for pred, gt in zip(preds_str, labels):
if 'Attn' in opt.Prediction:
pred = pred[:pred.find('[s]')] # prune after "end of sentence" token ([s])
gt = gt[:gt.find('[s]')]
if pred == gt:
n_correct += 1
norm_ED += edit_distance(pred, gt) / len(gt)
accuracy = n_correct / float(length_of_data) * 100
return valid_loss_avg.val(), accuracy, norm_ED, preds_str, labels, infer_time, length_of_data
def test(opt):
""" model configuration """
if 'CTC' in opt.Prediction:
converter = CTCLabelConverter(opt.character)
else:
converter = AttnLabelConverter(opt.character)
opt.num_class = len(converter.character)
if opt.rgb:
opt.input_channel = 3
model = Model(opt)
print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
opt.SequenceModeling, opt.Prediction)
model = torch.nn.DataParallel(model).cuda()
# load model
print('loading pretrained model from %s' % opt.saved_model)
model.load_state_dict(torch.load(opt.saved_model))
opt.experiment_name = '_'.join(opt.saved_model.split('/')[1:])
# print(model)
""" keep evaluation model and result logs """
os.makedirs(f'./result/{opt.experiment_name}', exist_ok=True)
os.system(f'cp {opt.saved_model} ./result/{opt.experiment_name}/')
""" setup loss """
if 'CTC' in opt.Prediction:
criterion = torch.nn.CTCLoss(zero_infinity=True).cuda()
else:
criterion = torch.nn.CrossEntropyLoss(ignore_index=0).cuda() # ignore [GO] token = ignore index 0
""" evaluation """
model.eval()
if opt.benchmark_all_eval: # evaluation with 10 benchmark evaluation datasets
benchmark_all_eval(model, criterion, converter, opt)
else:
AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
eval_data = hierarchical_dataset(root=opt.eval_data, opt=opt)
evaluation_loader = torch.utils.data.DataLoader(
eval_data, batch_size=opt.batch_size,
shuffle=False,
num_workers=int(opt.workers),
collate_fn=AlignCollate_evaluation, pin_memory=True)
_, accuracy_by_best_model, _, _, _, _, _ = validation(
model, criterion, evaluation_loader, converter, opt)
print(accuracy_by_best_model)
with open('./result/{0}/log_evaluation.txt'.format(opt.experiment_name), 'a') as log:
log.write(str(accuracy_by_best_model) + '\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--eval_data', required=True, help='path to evaluation dataset')
parser.add_argument('--benchmark_all_eval', action='store_true', help='evaluate 10 benchmark evaluation datasets')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
parser.add_argument('--batch_size', type=int, default=192, help='input batch size')
parser.add_argument('--saved_model', required=True, help="path to saved_model to evaluation")
""" Data processing """
parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length')
parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
parser.add_argument('--imgW', type=int, default=100, help='the width of the input image')
parser.add_argument('--rgb', action='store_true', help='use rgb input')
parser.add_argument('--character', type=str, default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label')
parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode')
parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize')
""" Model Architecture """
parser.add_argument('--Transformation', type=str, required=True, help='Transformation stage. None|TPS')
parser.add_argument('--FeatureExtraction', type=str, required=True, help='FeatureExtraction stage. VGG|RCNN|ResNet')
parser.add_argument('--SequenceModeling', type=str, required=True, help='SequenceModeling stage. None|BiLSTM')
parser.add_argument('--Prediction', type=str, required=True, help='Prediction stage. CTC|Attn')
parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN')
parser.add_argument('--input_channel', type=int, default=1, help='the number of input channel of Feature extractor')
parser.add_argument('--output_channel', type=int, default=512,
help='the number of output channel of Feature extractor')
parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state')
opt = parser.parse_args()
""" vocab / character number configuration """
if opt.sensitive:
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char).
cudnn.benchmark = True
cudnn.deterministic = True
opt.num_gpu = torch.cuda.device_count()
test(opt)