-
Notifications
You must be signed in to change notification settings - Fork 0
/
SBUS2PPM8_ESP.ino
198 lines (185 loc) · 8.17 KB
/
SBUS2PPM8_ESP.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// SBUS to PPM converter
// (c) 2023 Pablo Montoreano
/*********************************************************
@file SBUS2PPM8_ESP.ino
@brief SBUS to PPM protocol converter
@author Pablo Montoreano
@copyright 2023 Pablo Montoreano
@version 1.1 - 05/oct/23 - bug fix (0x0F is a valid SBUS value)
no 3rd party libraries used
for ESP01, nodeMCU, Wemos D1 mini or any ESP8266 (no debugging possible)
Select "nodeMcu 1.0" for 4Mb boards, "Generic ESP8266 Module" for 1Mb boards
Set MMU to "32K cache + 32Kb IRAM" if using ESP8266 Boards Manager version 3.1.2
Set flash size as you like, no data saved
*********************************************************/
// PPM signal is idle high, low 0.5 ms (start), 0.400 to 1.600 milliseconds channel pulse, 0.5 ms channel separation
// pulse train separation is 10.5 ms
#define SHOWSIGNAL // if defined LED will light when there is no radio signal, else it will reflect the PPM resolution mode (1024 ON or 2048 OFF)
#define LEDOFF HIGH
#define LEDON LOW
static const unsigned int PPM_out= 2; // PPM output port
static const unsigned int portCfg= 1; // resolution configuration (Jumper= 10 bits) GPIOTX
static const unsigned int LED_noSignal= 0; // LED (low speed or lost signal)
static const unsigned int maxChan= 8; // number of PPM channels in pulse train
static const unsigned int trainSepStart= (maxChan+1)<<1; // 2*(maxChan+1) start of train separation pulse pointer
static const unsigned int trainSep= 52500; // 10500 uS * 5 MHz DIV16
static const unsigned int chanSep= 2500; // 500 uS * 5 MHz
// failsafe in channel 3 when value below signalLost
// for chinese receivers that do not report failsafe in SBUS (i.e. Microzone MC9002)
static const unsigned int signalLost= 100;
static const unsigned long timeOutMs= 1000; // timeout if no packet received after 1 sec
static const unsigned long SBUSbaudRate= 100000; // SBUS baudrate 100K
static unsigned int sbusByte, byteNmbr;
static byte frame[25]; // SBUS frame
static unsigned int channel[17]; // 16 channels in SBUS stream + channels 17, 18 & failsafe in channel[0]
static unsigned int ppm1[maxChan+1], ppm2[maxChan+1]; // double buffering for interrupt data
static volatile unsigned int pTrain; // pulse train pointer (volatile because it is modified by ISR)
static bool lock1; // use pulse train 2 when 1 locked
static bool resol1024; // low resolution. lose a bit for a steadier output using 10 bits instead of 11
static unsigned long lastReception; // millis of last reception
static unsigned int i; // general counter
static bool newFrame;
// Timer1 interrupt
// default MMU (32K cache + 32Kb IRAM) will work ok
void IRAM_ATTR timerRoutine() {
if (pTrain == 0)
digitalWrite(PPM_out, LOW); // disable PPM output
else {
pTrain++;
if (pTrain < trainSepStart) { // still processing channels
if (pTrain & 1) { // now odd, process channel separation
digitalWrite(PPM_out, LOW);
timer1_write(chanSep); // channel separation pulse= 0.5mS
}
else {
digitalWrite(PPM_out, HIGH); // start of channel output (0.4 to 1.6 mS)
// pTrain counts both the pulse separations and the channel pulses, that's why we have to divide
// by two the ppm pulses index with the >> 1
if (lock1) timer1_write(ppm2[pTrain >> 1]); // if ppm1 array is being written to use ppm2
else timer1_write(ppm1[pTrain >> 1]);
}
}
else if (pTrain > trainSepStart) { // end of 10.5mS pulse train separation, start a channel sep pulse
digitalWrite(PPM_out, LOW);
pTrain= 1; // start new pulse train
timer1_write(chanSep); // channel separation pulse= 0.5mS
}
else { // ptrain == trainSepStart
digitalWrite(PPM_out, HIGH);
timer1_write(trainSep); // start pulse train separation
}
}
}
void decodeChannels() {
int bitPtr; // bit pointer in SBUS byte being decoded
int bytePtr; // byte pointer in SBUS frame
int chan; // channel number being decoded
int chanBit; // current channel bit being proccessed
channel[0]= frame[23];
bytePtr= 1;
bitPtr=0;
for (chan= 1; chan <= 16; chan++){
channel[chan]= 0;
for (chanBit= 0; chanBit < 11; chanBit++) {
channel[chan] |= ((frame[bytePtr] >> bitPtr) & 1) << chanBit;
if (++bitPtr > 7) { // change byte every 8 bits
bitPtr=0;
bytePtr++;
}
}
}
}
bool getFrame() {
while (Serial.available()) {
sbusByte= Serial.read();
// Bug fix: 0x0F is a valid value in the SBUS stream
// so we use a flag to detect the end of a packet (0) before enabling the capture of next frame
if ((sbusByte == 0x0F) && newFrame) { // if this byte is SBUS start byte start counting bytes
newFrame= false;
byteNmbr= 0;
}
else if (sbusByte == 0) newFrame= true; // end of frame, enable start of next frame (to distinguish from 0x0F channel values)
if (byteNmbr <= 24) { // 25 bytes total
frame[byteNmbr]= sbusByte; // save a byte
byteNmbr++;
// if a valid frame is complete (check pointer position, start byte 0F and end byte 0)
if ((byteNmbr == 25) && (sbusByte == 0) && (frame[0] == 0x0F)) return true;
}
}
return false; // keep buffering
}
void setup() {
pinMode(PPM_out, OUTPUT);
digitalWrite(PPM_out, LOW); // disable PPM output
pinMode(LED_noSignal, OUTPUT);
#ifdef SHOWSIGNAL
digitalWrite(LED_noSignal, LEDON);
#else
digitalWrite(LED_noSignal, LEDOFF);
#endif
Serial.begin(SBUSbaudRate, SERIAL_8E2);
delay(100);
// since we do not transmit anything, after the Serial port is initialized we can change TX pin to input and use it for a config jumper
pinMode(portCfg, FUNCTION_3); // convert TX to GPIO 1 (serial RX still works ok)
pinMode(portCfg, INPUT_PULLUP);
byteNmbr= 255; // invalidate SBUS byte number
lastReception= 0;
newFrame= false;
pTrain= 0; // idle
lock1= true;
timer1_isr_init();
timer1_attachInterrupt(timerRoutine);
timer1_enable(TIM_DIV16, TIM_EDGE, TIM_SINGLE);
}
void loop() {
if (getFrame()) {
lastReception= millis();
decodeChannels(); // decode channel bitstream into 0 - 2047 channel values
resol1024= (digitalRead(portCfg) == LOW); // can change resolution while running
#ifndef SHOWSIGNAL
digitalWrite(LED_noSignal, (resol1024) ? LEDON : LEDOFF); // reflect in LED
#endif
for (i= 1; i <= maxChan; i++) {
// TIM_DIV16 at 80MHz gives 0.2 uS per tick, so we have 5 ticks per uS
// each PPM channel pulse is 400 to 1600 uS while SBUS data is 0 to 2047, ajust values to timer
// ((int) (channel[i] * 1200.0 / 2047.0) + 400) * 5; simplified with a single float operation
// as an alternative we can use ppmx[i]= map(channel[i],0,2047,2000,8000);
// or map(channel[i] >> 1,0,1023,2000,8000); for half resolution
if (resol1024) {
if (lock1) ppm1[i]= 2000 + (int) ((channel[i] >> 1) * 5.862237); // low (1024) resolution
else ppm2[i]= 2000 + (int) ((channel[i] >> 1) * 5.862237);
}
else {
if (lock1) ppm1[i]= 2000 + (int) (channel[i] * 2.93112); // full 2048 resolution
else ppm2[i]= 2000 + (int) (channel[i] * 2.93112);
}
}
lock1= !lock1; // new stream is now valid, switch it. Timer interrupt will output next channel from new reading
if ((channel[3] < signalLost) || (channel[0] & 8)) { // if signal lost disable PPM out
pTrain= 0;
timer1_disable();
digitalWrite(PPM_out, LOW);
#ifdef SHOWSIGNAL
digitalWrite(LED_noSignal, LEDON);
#endif
}
else if (pTrain == 0) { // if we got signal and PPM is idle
pTrain= trainSepStart; // start new channel separation (PPM output was LOW)
digitalWrite(PPM_out, HIGH); // start pulse for channel sep
timer1_enable(TIM_DIV16, TIM_EDGE, TIM_SINGLE);
timer1_write(trainSep);
#ifdef SHOWSIGNAL
digitalWrite(LED_noSignal, LEDOFF);
#endif
}
}
if ((millis() - lastReception) > timeOutMs) lastReception= 0;
if (lastReception == 0) {
pTrain= 0;
timer1_disable();
digitalWrite(PPM_out, LOW);
#ifdef SHOWSIGNAL
digitalWrite(LED_noSignal, LEDON);
#endif
}
}