-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.py
394 lines (326 loc) · 14.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
from __future__ import print_function
from __future__ import division
import os
import sys
import time
import datetime
import argparse
import os.path as osp
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.optim import lr_scheduler
import torchvision.transforms as T
import data_manager
from dataset_loader import ImageDataset_seg, ImageDataset
import spatial_transforms as ST
import models
from losses import CrossEntropyLabelSmooth, TripletLoss, MaskLoss, DeepSupervision
from utils.iotools import save_checkpoint, check_isfile
from utils.avgmeter import AverageMeter
from utils.logger import Logger
from utils.torchtools import count_num_param
from eval_metrics import evaluate
from samplers import RandomIdentitySampler
from optimizers import init_optim
parser = argparse.ArgumentParser(description='Train image model with cross entropy loss and hard triplet loss')
# Datasets
parser.add_argument('-d', '--dataset', type=str, default='market1501_seg',
choices=data_manager.get_names())
parser.add_argument('-j', '--workers', default=4, type=int,
help="number of data loading workers (default: 4)")
parser.add_argument('--height', type=int, default=256,
help="height of an image (default: 256)")
parser.add_argument('--width', type=int, default=128,
help="width of an image (default: 128)")
parser.add_argument('--split-id', type=int, default=0,
help="split index")
# CUHK03-specific setting
parser.add_argument('--cuhk03-labeled', action='store_true',
help="whether to use labeled images, if false, detected images are used (default: False)")
parser.add_argument('--cuhk03-classic-split', action='store_true',
help="whether to use classic split by Li et al. CVPR'14 (default: False)")
parser.add_argument('--use-metric-cuhk03', action='store_true',
help="whether to use cuhk03-metric (default: False)")
# Optimization options
parser.add_argument('--optim', type=str, default='adam',
help="optimization algorithm (see optimizers.py)")
parser.add_argument('--max-epoch', default=60, type=int,
help="maximum epochs to run")
parser.add_argument('--start-epoch', default=0, type=int,
help="manual epoch number (useful on restarts)")
parser.add_argument('--train-batch', default=64, type=int,
help="train batch size")
parser.add_argument('--test-batch', default=32, type=int,
help="test batch size")
parser.add_argument('--lr', '--learning-rate', default=0.00035, type=float,
help="initial learning rate")
parser.add_argument('--stepsize', default=[20, 40], nargs='+', type=int,
help="stepsize to decay learning rate")
parser.add_argument('--gamma', default=0.1, type=float,
help="learning rate decay")
parser.add_argument('--weight-decay', default=5e-04, type=float,
help="weight decay (default: 5e-04)")
parser.add_argument('--margin', type=float, default=0.3,
help="margin for triplet loss")
parser.add_argument('--num-instances', type=int, default=4,
help="number of instances per identity")
# Architecture
parser.add_argument('-a', '--arch', type=str, default='IAUnet', choices=models.get_names())
parser.add_argument('--save-dir', type=str, default='./result/market/IAUnet')
# spatial attention loss
parser.add_argument('--mode', type=str, default='ce',
help='mask loss mode, in {l1, l2, ce}')
parser.add_argument('--alpha', type=float, default=0.5,
help="the weight for the spatial attention loss")
# data process
parser.add_argument('--flip_cnt', default=1, type=int)
# Miscs
parser.add_argument('--distance', type=str, default='consine')
parser.add_argument('--seed', type=int, default=1,
help="manual seed")
parser.add_argument('--resume', type=str, default='', metavar='PATH')
parser.add_argument('--evaluate', action='store_true',
help="evaluation only")
parser.add_argument('--eval-step', type=int, default=10,
help="run evaluation for every N epochs (set to -1 to test after training)")
parser.add_argument('--start-eval', type=int, default=0,
help="start to evaluate after specific epoch")
parser.add_argument('--gpu-devices', default='2, 3', type=str,
help='gpu device ids for CUDA_VISIBLE_DEVICES')
args = parser.parse_args()
def main():
torch.manual_seed(args.seed)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
use_gpu = torch.cuda.is_available()
if not args.evaluate:
sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
else:
sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'), mode='a')
print("==========\nArgs:{}\n==========".format(args))
if use_gpu:
print("Currently using GPU {}".format(args.gpu_devices))
cudnn.benchmark = True
torch.cuda.manual_seed_all(args.seed)
else:
print("Currently using CPU (GPU is highly recommended)")
print("Initializing dataset {}".format(args.dataset))
dataset = data_manager.init_imgreid_dataset(
name=args.dataset, split_id=args.split_id,
cuhk03_labeled=args.cuhk03_labeled, cuhk03_classic_split=args.cuhk03_classic_split,
)
transform_train = ST.Compose([
ST.Scale((args.height, args.width), interpolation=3),
ST.RandomHorizontalFlip(),
ST.ToTensor(),
ST.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
ST.RandomErasing(0.5),
])
transform_test = T.Compose([
T.Resize((args.height, args.width), interpolation=3),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
pin_memory = True if use_gpu else False
trainloader = DataLoader(
ImageDataset_seg(dataset.train, transform=transform_train),
sampler=RandomIdentitySampler(dataset.train, num_instances=args.num_instances),
batch_size=args.train_batch, num_workers=args.workers,
pin_memory=pin_memory, drop_last=True,
)
queryloader = DataLoader(
ImageDataset(dataset.query, transform=transform_test),
batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
pin_memory=pin_memory, drop_last=False,
)
galleryloader = DataLoader(
ImageDataset(dataset.gallery, transform=transform_test),
batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
pin_memory=pin_memory, drop_last=False,
)
print("Initializing model: {}".format(args.arch))
model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids)
print(model)
print("Model size: {:.3f} M".format(count_num_param(model)))
criterion_xent = CrossEntropyLabelSmooth(num_classes=dataset.num_train_pids, use_gpu=use_gpu)
criterion_htri = TripletLoss(margin=args.margin, distance=args.distance)
criterion_mask = MaskLoss(mode=args.mode)
optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay)
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma)
if args.resume:
if check_isfile(args.resume):
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'])
args.start_epoch = checkpoint['epoch']
rank1 = checkpoint['rank1']
print("Loaded checkpoint from '{}'".format(args.resume))
print("- start_epoch: {}\n- rank1: {}".format(args.start_epoch, rank1))
if use_gpu:
model = nn.DataParallel(model).cuda()
if args.evaluate:
print("Evaluate only")
test(model, queryloader, galleryloader, use_gpu)
return
start_time = time.time()
train_time = 0
best_rank1 = -np.inf
best_epoch = 0
print("==> Start training")
for epoch in range(args.start_epoch, args.max_epoch):
scheduler.step()
start_train_time = time.time()
train(epoch, model, criterion_xent, criterion_htri, criterion_mask, optimizer, trainloader)
train_time += round(time.time() - start_train_time)
if (epoch + 1) % args.eval_step == 0 or epoch == 0:
print("==> Test")
rank1 = test(model, queryloader, galleryloader, use_gpu)
is_best = rank1 > best_rank1
if is_best:
best_rank1 = rank1
best_epoch = epoch + 1
if use_gpu:
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
save_checkpoint({
'state_dict': state_dict,
'rank1': rank1,
'epoch': epoch,
}, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))
print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(best_rank1, best_epoch))
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
train_time = str(datetime.timedelta(seconds=train_time))
print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time))
print("==========\nArgs:{}\n==========".format(args))
def train(epoch, model, criterion_xent, criterion_htri, criterion_mask, optimizer, trainloader, use_gpu=True):
xent_losses = AverageMeter()
htri_losses = AverageMeter()
mask_losses = AverageMeter()
accs = AverageMeter()
batch_time = AverageMeter()
data_time = AverageMeter()
model.train()
end = time.time()
for batch_idx, (sequences, pids, _) in enumerate(trainloader):
if use_gpu:
sequences, pids = sequences.cuda(), pids.cuda()
# measure data loading time
data_time.update(time.time() - end)
# zero the parameter gradients
optimizer.zero_grad()
# forward
imgs = sequences[:, :3]
head_masks = sequences[:, 3:4]
upper_masks = sequences[:, 4:5]
lower_masks = sequences[:, 5:6]
shoes_masks = sequences[:, 6:7]
outputs, features, a_head, a_upper, a_lower, a_shoes = model(imgs)
_, preds = torch.max(outputs.data, 1)
xent_loss = criterion_xent(outputs, pids)
htri_loss = criterion_htri(features, pids)
loss = xent_loss + htri_loss
head_loss = DeepSupervision(criterion_mask, a_head, head_masks)
upper_loss = DeepSupervision(criterion_mask, a_upper, upper_masks)
lower_loss = DeepSupervision(criterion_mask, a_lower, lower_masks)
shoes_loss = DeepSupervision(criterion_mask, a_shoes, shoes_masks)
mask_loss = (head_loss + upper_loss + lower_loss + shoes_loss) / 4.0
total_loss = loss + args.alpha * mask_loss
# backward + optimize
total_loss.backward()
optimizer.step()
# statistics
accs.update(torch.sum(preds == pids.data).float()/pids.size(0), pids.size(0))
xent_losses.update(xent_loss.item(), pids.size(0))
htri_losses.update(htri_loss.item(), pids.size(0))
mask_losses.update(mask_loss.item(), pids.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
print('Epoch{0} '
'Time:{batch_time.sum:.1f}s '
'Data:{data_time.sum:.1f}s '
'xentLoss:{xent_loss.avg:.4f} '
'triLoss:{tri_loss.avg:.4f} '
'MaskLoss:{mask_loss.avg:.4f} '
'Acc:{acc.avg:.2%} '.format(
epoch+1, batch_time=batch_time,
data_time=data_time, xent_loss=xent_losses,
tri_loss=htri_losses, mask_loss=mask_losses, acc=accs))
def fliplr(img, use_gpu):
'''flip horizontal'''
inv_idx = torch.arange(img.size(3)-1, -1, -1).long()
if use_gpu: inv_idx = inv_idx.cuda()
img_flip = img.index_select(3, inv_idx)
return img_flip
def test(model, queryloader, galleryloader, use_gpu, ranks=[1, 5, 10, 20]):
batch_time = AverageMeter()
model.eval()
with torch.no_grad():
qf, q_pids, q_camids = [], [], []
for batch_idx, (imgs, pids, camids) in enumerate(queryloader):
end = time.time()
n, c, h, w = imgs.size()
features = torch.FloatTensor(n, model.module.feat_dim).zero_()
for i in range(args.flip_cnt):
if (i==1):
imgs = fliplr(imgs, use_gpu)
f = model(imgs)[1]
f = f.data.cpu()
features = features + f
batch_time.update(time.time() - end)
qf.append(features)
q_pids.extend(pids)
q_camids.extend(camids)
qf = torch.cat(qf, 0)
q_pids = np.asarray(q_pids)
q_camids = np.asarray(q_camids)
print("Extracted features for query set, obtained {}-by-{} matrix".format(qf.size(0), qf.size(1)))
gf, g_pids, g_camids = [], [], []
for batch_idx, (imgs, pids, camids) in enumerate(galleryloader):
end = time.time()
n, c, h, w = imgs.size()
features = torch.FloatTensor(n, model.module.feat_dim).zero_()
for i in range(args.flip_cnt):
if (i==1):
imgs = fliplr(imgs, use_gpu)
if use_gpu: imgs = imgs.cuda()
f = model(imgs)[1]
f = f.data.cpu()
features = features + f
batch_time.update(time.time() - end)
gf.append(features)
g_pids.extend(pids)
g_camids.extend(camids)
gf = torch.cat(gf, 0)
g_pids = np.asarray(g_pids)
g_camids = np.asarray(g_camids)
print("Extracted features for gallery set, obtained {}-by-{} matrix".format(gf.size(0), gf.size(1)))
print("==> BatchTime(s)/BatchSize(img): {:.3f}/{}".format(batch_time.avg, args.test_batch))
m, n = qf.size(0), gf.size(0)
distmat = torch.zeros((m, n))
if args.distance == 'euclidean':
distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \
torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t()
distmat.addmm_(1, -2, qf, gf.t())
else:
q_norm = torch.norm(qf, p=2, dim=1, keepdim=True)
g_norm = torch.norm(gf, p=2, dim=1, keepdim=True)
qf = qf.div(q_norm.expand_as(qf))
gf = gf.div(g_norm.expand_as(gf))
distmat = - torch.mm(qf, gf.t())
distmat = distmat.numpy()
print("Computing CMC and mAP")
cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids, use_metric_cuhk03=args.use_metric_cuhk03)
print("Results ----------")
print("mAP: {:.1%}".format(mAP))
print("CMC curve")
for r in ranks:
print("Rank-{:<3}: {:.1%}".format(r, cmc[r-1]))
print("------------------")
return cmc[0]
if __name__ == '__main__':
main()