-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathmatrix4_common.h
627 lines (579 loc) · 21.1 KB
/
matrix4_common.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
/*
* This file is part of dsp.
*
* Copyright (c) 2020-2025 Michael Barbour <[email protected]>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef DSP_MATRIX4_COMMON_H
#define DSP_MATRIX4_COMMON_H
#include <float.h>
#include <math.h>
#include <string.h>
#include "effect.h"
#include "ewma.h"
#include "smf.h"
#include "util.h"
#define ENV_SMOOTH_TIME 30.0
#define EVENT_SMOOTH_TIME 30.0
#define ACCOM_TIME 300.0
#define RISE_TIME_FAST 30.0
#define RISE_TIME_SLOW 100.0
#define NORM_TIME 160.0
#define NORM_CROSSFEED 0.1
#define NORM_FACTOR 0.9
#define ORD_FACTOR_DECAY 10.0
#define EVENT_SAMPLE_TIME 30.0
#define EVENT_MAX_HOLD_TIME 200.0
#define EVENT_MIN_HOLD_TIME 50.0
#define EVENT_MASK_TIME 100.0
#define DELAY_TIME (EVENT_SAMPLE_TIME + RISE_TIME_FAST)
#define ORD_SENS_ERR 10.0
#define ORD_SENS_LEVEL 10.0
#define DIFF_SENS_ERR 10.0
#define DIFF_SENS_LEVEL 3.0
/* note: implemented in matrix4{,_mb}.c */
#define DIR_BOOST_RT0 100.0
#define DIR_BOOST_SENS_RISE 0.1
#define DIR_BOOST_SENS_FALL 0.002
/* fade parameters when toggling effect via signal() */
#define FADE_TIME 500.0
/* 1 = linear; 2 = quarter sine; 3 = half sine; 4 = double-exponential sigmoid */
#define FADE_TYPE 3
#ifndef DOWNSAMPLE_FACTOR
#define DOWNSAMPLE_FACTOR 1
#endif
#ifndef EVENT_THRESH
#define EVENT_THRESH 1.8
#endif
#ifndef EVENT_END_THRESH
#define EVENT_END_THRESH 0.2
#endif
/* 1 = linear; 2 = parabolic 2x; 3 = cubic B-spline; 4 = polyphase FIR (blackman window) */
#ifndef CS_INTERP_TYPE
#if DOWNSAMPLE_FACTOR == 4 || DOWNSAMPLE_FACTOR == 2
#define CS_INTERP_TYPE 4
#else
#define CS_INTERP_TYPE 2
#endif
#endif
#define DEBUG_PRINT_MIN_RISE_TIME 0
struct envs {
double l, r, sum, diff;
};
struct smooth_state {
struct ewma_state env[4], pwr_env[4];
};
struct axes {
double lr, cs;
};
struct matrix_coefs {
double lsl, lsr, rsl, rsr;
double dir_boost;
};
struct event_state {
char sample, hold;
enum {
EVENT_FLAG_L = 1<<0,
EVENT_FLAG_R = 1<<1,
EVENT_FLAG_USE_ORD = 1<<2,
EVENT_FLAG_FUSE = 1<<3,
EVENT_FLAG_END = 1<<4,
} flags[2];
struct ewma_state accom[4], norm[2], slow[4], smooth[2], avg[4], mask[2];
struct ewma_state drift[4];
struct axes dir, *ord_buf;
struct envs *env_buf, *pwr_env_buf, *adapt_buf;
double ord_factor, adj;
ssize_t t, t_sample, t_hold;
ssize_t ord_count, diff_count, early_count;
ssize_t buf_len, buf_p;
#if DEBUG_PRINT_MIN_RISE_TIME
double max_ord_scale, max_diff_scale, fs;
#endif
};
struct event_config {
ssize_t sample_frames, max_hold_frames, min_hold_frames;
double ord_factor_c;
};
struct matrix4_config {
int n_channels, opt_str_idx, c0, c1;
double surr_mult;
char show_status, do_dir_boost, enable_signal, do_phase_lin;
ssize_t surr_delay_frames;
};
#define CALC_NORM_MULT(x) (1.0 / sqrt(1.0 + (x)*(x)))
#define TO_DEGREES(x) ((x)*M_1_PI*180.0)
#define TIME_TO_FRAMES(x, fs) lround((x)/1000.0 * (fs))
#define NEAR_POS_ZERO(x) ((x) < DBL_MIN)
#define ANGLE(n, d, expr) ((NEAR_POS_ZERO(n) && NEAR_POS_ZERO(d)) ? M_PI_4 : (NEAR_POS_ZERO(d)) ? M_PI_2 : atan(expr))
#define CALC_LR(n, d, expr) (ANGLE(n, d, expr) - M_PI_4)
#define CALC_CS(n, d, expr) (ANGLE(n, d, expr) - M_PI_4)
#define DOWNSAMPLED_FS(fs) (((double) (fs)) / DOWNSAMPLE_FACTOR)
int get_args_and_channels(const struct effect_info *, const struct stream_info *, const char *, int, const char *const *, struct matrix4_config *);
int parse_effect_opts(const char *const *, const struct stream_info *, struct matrix4_config *);
struct effect * matrix4_delay_effect_init(const struct effect_info *, const struct stream_info *, ssize_t);
#ifndef DSP_MATRIX4_COMMON_H_NO_STATIC_FUNCTIONS
static inline double err_scale(double a, double b, double err, double max_err_gain)
{
if (NEAR_POS_ZERO(a) && NEAR_POS_ZERO(b))
return 1.0;
const double n = a+b;
const double d = MAXIMUM(MINIMUM(a, b), n/max_err_gain);
if (NEAR_POS_ZERO(d))
return 1.0 + err*max_err_gain;
return 1.0 + err*n/d;
}
static inline double drift_scale(const struct axes *ax0, const struct axes *ax1, const struct envs *env, double sens_err, double sens_level)
{
const double lr_err = fabs(ax1->lr - ax0->lr) / M_PI_2;
const double cs_err = fabs(ax1->cs - ax0->cs) / M_PI_2;
const double lr_scale = err_scale(env->l, env->r, lr_err*sens_err, sens_level);
const double cs_scale = err_scale(env->sum, env->diff, cs_err*sens_err, sens_level);
return MAXIMUM(lr_scale, cs_scale);
}
#if DOWNSAMPLE_FACTOR > 1
#if CS_INTERP_TYPE == 1
/* linear */
#define CS_INTERP_PEEK(s) ((s)->y[1])
#define CS_INTERP_DELAY_FRAMES (1*DOWNSAMPLE_FACTOR)
struct cs_interp_state {
double c0, y[2];
};
static inline void cs_interp_insert(struct cs_interp_state *s, double x)
{
double *y = s->y;
y[0] = y[1];
y[1] = x;
s->c0 = y[1]-y[0];
}
static inline double cs_interp(const struct cs_interp_state *s, int x)
{
const double t = x * (1.0/DOWNSAMPLE_FACTOR);
return s->y[0] + t*s->c0;
}
#elif CS_INTERP_TYPE == 2
/* parabolic 2x -- Niemitalo, Olli, "Polynomial Interpolators for
* High-Quality Resampling of Oversampled Audio," October 2001. */
#define CS_INTERP_PEEK(s) ((s)->y[2])
#define CS_INTERP_DELAY_FRAMES (3*DOWNSAMPLE_FACTOR)
struct cs_interp_state {
double c[3];
double y[4];
};
static void cs_interp_insert(struct cs_interp_state *s, double x)
{
double *y = s->y, *c = s->c;
memmove(y, y+1, sizeof(double)*3);
y[3] = x;
const double a = y[2]-y[0];
c[0] = 1.0/2.0*y[1] + 1.0/4.0*(y[0]+y[2]);
c[1] = 1.0/2.0*a;
c[2] = 1.0/4.0*(y[3]-y[1]-a);
}
static inline double cs_interp(const struct cs_interp_state *s, int x)
{
const double *c = s->c, t = x * (1.0/DOWNSAMPLE_FACTOR);
return (c[2]*t+c[1])*t+c[0];
}
#elif CS_INTERP_TYPE == 3
/* cubic B-spline */
#define CS_INTERP_PEEK(s) ((s)->y[2])
#define CS_INTERP_DELAY_FRAMES (3*DOWNSAMPLE_FACTOR)
struct cs_interp_state {
double c[4];
double y[4];
};
static void cs_interp_insert(struct cs_interp_state *s, double x)
{
double *y = s->y, *c = s->c;
memmove(y, y+1, sizeof(double)*3);
y[3] = x;
const double a = y[0]+y[2];
c[0] = 1.0/6.0*a + 2.0/3.0*y[1];
c[1] = 1.0/2.0*(y[2]-y[0]);
c[2] = 1.0/2.0*a - y[1];
c[3] = 1.0/2.0*(y[1]-y[2]) + 1.0/6.0*(y[3]-y[0]);
}
static inline double cs_interp(const struct cs_interp_state *s, int x)
{
const double *c = s->c, t = x * (1.0/DOWNSAMPLE_FACTOR);
return ((c[3]*t+c[2])*t+c[1])*t+c[0];
}
#elif CS_INTERP_TYPE == 4
/* polyphase FIR (blackman window) */
#define CS_INTERP_PEEK(s) ((s)->y[DOWNSAMPLE_FACTOR-1])
#if DOWNSAMPLE_FACTOR == 2
#define CS_INTERP_DELAY_FRAMES (4*DOWNSAMPLE_FACTOR-1)
struct cs_interp_state {
double y[2], m[12];
int p;
};
static void cs_interp_insert(struct cs_interp_state *state, double x)
{
const double r[6] = {
1.070924528086533e-02*x, 5.158730158730156e-02*x,
1.349206349206349e-01*x, 2.499999999999999e-01*x,
3.543701197984997e-01*x, 3.968253968253968e-01*x,
};
int p = state->p;
double *m = state->m, *y = state->y;
y[0]=m[p++]+r[0]; y[1]=m[p++]+r[1];
memset(&m[state->p], 0, sizeof(double)*2);
if (p==12) p=0;
state->p = p;
m[p++]+=r[2]; m[p++]+=r[3]; if (p==12) p=0;
m[p++]+=r[4]; m[p++]+=r[5]; if (p==12) p=0;
m[p++]+=r[4]; m[p++]+=r[3]; if (p==12) p=0;
m[p++]+=r[2]; m[p++]+=r[1]; if (p==12) p=0;
m[p++]+=r[0];
}
#elif DOWNSAMPLE_FACTOR == 4
#define CS_INTERP_DELAY_FRAMES (3*DOWNSAMPLE_FACTOR-1)
struct cs_interp_state {
double y[4], m[16];
int p;
};
static void cs_interp_insert(struct cs_interp_state *state, double x)
{
const double r[8] = {
8.707604904333586e-03*x, 3.955155321828940e-02*x,
1.024343698348400e-01*x, 2.023809523809523e-01*x,
3.302221271950125e-01*x, 4.604484467817105e-01*x,
5.586358980658138e-01*x, 5.952380952380951e-01*x,
};
int p = state->p;
double *m = state->m, *y = state->y;
y[0]=m[p++]+r[0]; y[1]=m[p++]+r[1]; y[2]=m[p++]+r[2]; y[3]=m[p++]+r[3];
memset(&m[state->p], 0, sizeof(double)*4);
p &= 0xf;
state->p = p;
m[p++]+=r[4]; m[p++]+=r[5]; m[p++]+=r[6]; m[p++]+=r[7];
p &= 0xf;
m[p++]+=r[6]; m[p++]+=r[5]; m[p++]+=r[4]; m[p++]+=r[3];
p &= 0xf;
m[p++]+=r[2]; m[p++]+=r[1]; m[p++]+=r[0];
}
#elif DOWNSAMPLE_FACTOR == 8
#define CS_INTERP_DELAY_FRAMES (3*DOWNSAMPLE_FACTOR-1)
struct cs_interp_state {
double y[8], m[32];
int p;
};
static void cs_interp_insert(struct cs_interp_state *state, double x)
{
const double r[16] = {
2.093882380528402e-03*x, 8.707604904333586e-03*x,
2.076182645115152e-02*x, 3.955155321828940e-02*x,
6.642869577439980e-02*x, 1.024343698348400e-01*x,
1.479431407089482e-01*x, 2.023809523809523e-01*x,
2.640683323852150e-01*x, 3.302221271950125e-01*x,
3.971252630479725e-01*x, 4.604484467817105e-01*x,
5.156842147264761e-01*x, 5.586358980658138e-01*x,
5.858946445253084e-01*x, 5.952380952380952e-01*x,
};
int p = state->p;
double *m = state->m, *y = state->y;
y[0]=m[p++]+r[0]; y[1]=m[p++]+r[1]; y[2]=m[p++]+r[2]; y[3]=m[p++]+r[3];
y[4]=m[p++]+r[4]; y[5]=m[p++]+r[5]; y[6]=m[p++]+r[6]; y[7]=m[p++]+r[7];
memset(&m[state->p], 0, sizeof(double)*8);
p &= 0x1f;
state->p = p;
m[p++]+=r[8]; m[p++]+=r[9]; m[p++]+=r[10]; m[p++]+=r[11];
m[p++]+=r[12]; m[p++]+=r[13]; m[p++]+=r[14]; m[p++]+=r[15];
p &= 0x1f;
m[p++]+=r[14]; m[p++]+=r[13]; m[p++]+=r[12]; m[p++]+=r[11];
m[p++]+=r[10]; m[p++]+=r[9]; m[p++]+=r[8]; m[p++]+=r[7];
p &= 0x1f;
m[p++]+=r[6]; m[p++]+=r[5]; m[p++]+=r[4]; m[p++]+=r[3];
m[p++]+=r[2]; m[p++]+=r[1]; m[p++]+=r[0];
}
#else
#error "unsupported DOWNSAMPLE_FACTOR"
#endif
static inline double cs_interp(const struct cs_interp_state *state, int x)
{
return state->y[x];
}
#else
#error "illegal CS_INTERP_TYPE"
#endif
#endif
static void smooth_state_init(struct smooth_state *sm, const struct stream_info *istream)
{
for (int i = 0; i < 4; ++i) ewma_init(&sm->env[i], istream->fs, EWMA_RISE_TIME(ENV_SMOOTH_TIME));
for (int i = 0; i < 4; ++i) ewma_init(&sm->pwr_env[i], istream->fs, EWMA_RISE_TIME(ENV_SMOOTH_TIME));
}
static void event_state_init(struct event_state *ev, const struct stream_info *istream)
{
for (int i = 0; i < 4; ++i) ewma_init(&ev->accom[i], DOWNSAMPLED_FS(istream->fs), EWMA_RISE_TIME(ACCOM_TIME));
for (int i = 0; i < 2; ++i) ewma_init(&ev->norm[i], DOWNSAMPLED_FS(istream->fs), EWMA_RISE_TIME(NORM_TIME));
for (int i = 0; i < 4; ++i) ewma_init(&ev->slow[i], DOWNSAMPLED_FS(istream->fs), EWMA_RISE_TIME(RISE_TIME_SLOW));
for (int i = 0; i < 2; ++i) ewma_init(&ev->smooth[i], DOWNSAMPLED_FS(istream->fs), EWMA_RISE_TIME(EVENT_SMOOTH_TIME));
for (int i = 0; i < 4; ++i) ewma_init(&ev->avg[i], DOWNSAMPLED_FS(istream->fs), EWMA_RISE_TIME(EVENT_SAMPLE_TIME));
for (int i = 0; i < 2; ++i) ewma_init(&ev->mask[i], DOWNSAMPLED_FS(istream->fs), EWMA_RISE_TIME(ACCOM_TIME));
for (int i = 0; i < 2; ++i) ewma_init(&ev->drift[i], DOWNSAMPLED_FS(istream->fs), EWMA_RISE_TIME(ACCOM_TIME*2.0));
for (int i = 2; i < 4; ++i) ewma_init(&ev->drift[i], DOWNSAMPLED_FS(istream->fs), EWMA_RISE_TIME(RISE_TIME_FAST*2.0));
ev->t_hold = -2;
ev->buf_len = TIME_TO_FRAMES(EVENT_SAMPLE_TIME, DOWNSAMPLED_FS(istream->fs));
ev->ord_buf = calloc(ev->buf_len, sizeof(struct axes));
ev->env_buf = calloc(ev->buf_len, sizeof(struct envs));
ev->pwr_env_buf = calloc(ev->buf_len, sizeof(struct envs));
ev->adapt_buf = calloc(ev->buf_len, sizeof(struct envs));
#if DEBUG_PRINT_MIN_RISE_TIME
ev->max_diff_scale = ev->max_ord_scale = 1.0;
ev->fs = DOWNSAMPLED_FS(istream->fs);
#endif
}
static void event_state_cleanup(struct event_state *ev)
{
free(ev->ord_buf);
free(ev->env_buf);
free(ev->pwr_env_buf);
free(ev->adapt_buf);
#if DEBUG_PRINT_MIN_RISE_TIME
#define EWMA_CONST_TO_RT(x, fs) (-1.0/log(1.0-(x))/(fs)*1000.0*2.1972)
#define EWMA_RT_TO_CONST(x, fs) (1.0-exp(-1.0/((fs)*((x)/1000.0/2.1972))))
LOG_FMT(LL_VERBOSE, "%s(): minimum rise time: ord=%gms; diff=%gms", __func__,
EWMA_CONST_TO_RT(EWMA_RT_TO_CONST(ACCOM_TIME*2.0, ev->fs)*ev->max_ord_scale, ev->fs),
EWMA_CONST_TO_RT(EWMA_RT_TO_CONST(RISE_TIME_FAST*2.0, ev->fs)*ev->max_diff_scale, ev->fs));
#endif
}
static void event_config_init(struct event_config *evc, const struct stream_info *istream)
{
evc->sample_frames = TIME_TO_FRAMES(EVENT_SAMPLE_TIME, DOWNSAMPLED_FS(istream->fs));
evc->max_hold_frames = TIME_TO_FRAMES(EVENT_MAX_HOLD_TIME, DOWNSAMPLED_FS(istream->fs));
evc->min_hold_frames = TIME_TO_FRAMES(EVENT_MIN_HOLD_TIME, DOWNSAMPLED_FS(istream->fs));
evc->ord_factor_c = exp(-1.0/(DOWNSAMPLED_FS(istream->fs)*ORD_FACTOR_DECAY));
}
static inline double fade_mult(ssize_t pos, ssize_t n, int is_out)
{
double fade = (double) (n-pos) / n;
if (is_out) fade = 1.0 - fade;
#if FADE_TYPE == 1
return fade;
#elif FADE_TYPE == 2
return sin(fade*M_PI_2);
#elif FADE_TYPE == 3
return (1.0 - cos(fade*M_PI)) * 0.5;
#elif FADE_TYPE == 4
return (fade <= 0.5) ? 4.0 * fade*fade*fade : 1.0 - 4.0 * (1.0-fade)*(1.0-fade)*(1.0-fade);
#else
#error "illegal FADE_TYPE"
#endif
}
static void calc_input_envs(struct smooth_state *sm, double l, double r, struct envs *env, struct envs *pwr_env)
{
const double sum = l+r, diff = l-r;
env->l = ewma_run(&sm->env[0], fabs(l));
env->r = ewma_run(&sm->env[1], fabs(r));
env->sum = ewma_run(&sm->env[2], fabs(sum));
env->diff = ewma_run(&sm->env[3], fabs(diff));
pwr_env->l = ewma_run(&sm->pwr_env[0], l*l);
pwr_env->r = ewma_run(&sm->pwr_env[1], r*r);
pwr_env->sum = ewma_run(&sm->pwr_env[2], sum*sum);
pwr_env->diff = ewma_run(&sm->pwr_env[3], diff*diff);
}
static void process_events(struct event_state *ev, const struct event_config *evc, const struct envs *env, const struct envs *pwr_env, struct axes *ax, struct axes *ax_ev)
{
const struct axes ord = {
.lr = CALC_LR(env->l, env->r, env->l/env->r),
.cs = CALC_CS(env->sum, env->diff, env->sum/env->diff),
};
const struct envs adapt = {
.l = pwr_env->l - ewma_run_set_max(&ev->accom[0], pwr_env->l),
.r = pwr_env->r - ewma_run_set_max(&ev->accom[1], pwr_env->r),
.sum = pwr_env->sum - ewma_run_set_max(&ev->accom[2], pwr_env->sum),
.diff = pwr_env->diff - ewma_run_set_max(&ev->accom[3], pwr_env->diff),
};
const struct axes diff = {
.lr = CALC_LR(adapt.l, adapt.r, sqrt(adapt.l/adapt.r)),
.cs = CALC_CS(adapt.sum, adapt.diff, sqrt(adapt.sum/adapt.diff)),
};
const struct axes ord_d = ev->ord_buf[ev->buf_p];
ev->ord_buf[ev->buf_p] = ord;
const struct envs env_d = ev->env_buf[ev->buf_p];
ev->env_buf[ev->buf_p] = *env;
/* const struct envs pwr_env_d = ev->pwr_env_buf[ev->buf_p]; */
ev->pwr_env_buf[ev->buf_p] = *pwr_env;
const struct envs adapt_d = ev->adapt_buf[ev->buf_p];
ev->adapt_buf[ev->buf_p] = adapt;
ev->buf_p = (ev->buf_p + 1 >= ev->buf_len) ? 0 : ev->buf_p + 1;
ev->adj = 1.0 - ev->ord_factor/20.0;
ev->adj = (ev->adj > 0.5) ? ev->adj : 0.5;
ev->ord_factor *= evc->ord_factor_c;
const double l_pwr_xf = pwr_env->l*(1.0-NORM_CROSSFEED) + pwr_env->r*NORM_CROSSFEED;
const double r_pwr_xf = pwr_env->r*(1.0-NORM_CROSSFEED) + pwr_env->l*NORM_CROSSFEED;
const double l_norm_div = ewma_run(&ev->norm[0], fabs(l_pwr_xf - ewma_run(&ev->slow[0], l_pwr_xf)*NORM_FACTOR*ev->adj));
const double r_norm_div = ewma_run(&ev->norm[1], fabs(r_pwr_xf - ewma_run(&ev->slow[1], r_pwr_xf)*NORM_FACTOR*ev->adj));
ewma_run_scale_asym(&ev->mask[0], l_pwr_xf, 1.0, ACCOM_TIME/EVENT_MASK_TIME);
ewma_run_scale_asym(&ev->mask[1], r_pwr_xf, 1.0, ACCOM_TIME/EVENT_MASK_TIME);
const double l_mask = MAXIMUM(l_pwr_xf - ewma_get_last(&ev->mask[0]), 0.0);
const double r_mask = MAXIMUM(r_pwr_xf - ewma_get_last(&ev->mask[1]), 0.0);
const double l_mask_norm = ewma_run(&ev->smooth[0], (!NEAR_POS_ZERO(l_norm_div)) ? l_mask / l_norm_div : (NEAR_POS_ZERO(l_mask)) ? 0.0 : EVENT_THRESH*4.0);
const double r_mask_norm = ewma_run(&ev->smooth[1], (!NEAR_POS_ZERO(r_norm_div)) ? r_mask / r_norm_div : (NEAR_POS_ZERO(r_mask)) ? 0.0 : EVENT_THRESH*4.0);
const double l_event = (l_mask_norm - ewma_run(&ev->slow[2], l_mask_norm)) * ev->adj;
const double r_event = (r_mask_norm - ewma_run(&ev->slow[3], r_mask_norm)) * ev->adj;
if (!ev->sample && (l_event > EVENT_THRESH || r_event > EVENT_THRESH)) {
ev->sample = 1;
ev->flags[1] = 0;
ev->flags[1] |= (l_event >= r_event) ? EVENT_FLAG_L : 0;
ev->flags[1] |= (r_event >= l_event) ? EVENT_FLAG_R : 0;
ev->t_sample = ev->t;
if (ev->t - ev->t_hold > 1) {
ewma_set(&ev->avg[0], ord.lr);
ewma_set(&ev->avg[1], ord.cs);
ewma_set(&ev->avg[2], ord.lr);
ewma_set(&ev->avg[3], ord.cs);
}
else ev->flags[1] |= EVENT_FLAG_FUSE;
}
if (ev->sample) {
ewma_run(&ev->avg[0], ord.lr);
ewma_run(&ev->avg[1], ord.cs);
ewma_run(&ev->avg[2], diff.lr);
ewma_run(&ev->avg[3], diff.cs);
if (ev->t - ev->t_sample >= evc->sample_frames) {
ev->sample = 0;
ev->hold = 1;
ev->t_hold = ev->t;
ev->dir.lr = ewma_get_last(&ev->avg[2]);
ev->dir.cs = ewma_get_last(&ev->avg[3]);
if (fabs(ev->dir.lr)+fabs(ev->dir.cs) > M_PI_4*1.001) {
ev->flags[1] |= EVENT_FLAG_USE_ORD;
ev->dir.lr = ewma_get_last(&ev->avg[0]);
ev->dir.cs = ewma_get_last(&ev->avg[1]);
++ev->ord_count;
ev->ord_factor += 1.0;
}
else if (!(ev->flags[1] & EVENT_FLAG_FUSE))
++ev->diff_count;
ev->flags[0] = ev->flags[1];
/* LOG_FMT(LL_VERBOSE, "%s(): event: type: %4s; lr: %+06.2f°; cs: %+06.2f°",
__func__, (ev->flags[1] & EVENT_FLAG_USE_ORD) ? "ord" : "diff",
TO_DEGREES(ev->dir.lr), TO_DEGREES(ev->dir.cs)); */
}
}
const struct axes drift_last = { .lr = ewma_get_last(&ev->drift[0]), .cs = ewma_get_last(&ev->drift[1]) };
if (ev->hold) {
const double ds = drift_scale(&drift_last, &ev->dir, (ev->flags[0] & EVENT_FLAG_USE_ORD) ? &env_d : &adapt_d, DIFF_SENS_ERR, DIFF_SENS_LEVEL);
#if DEBUG_PRINT_MIN_RISE_TIME
ev->max_diff_scale = MAXIMUM(ev->max_diff_scale, ds);
#endif
ax_ev->lr = ax->lr = ewma_set(&ev->drift[0], ewma_run_scale(&ev->drift[2], ev->dir.lr, ds));
ax_ev->cs = ax->cs = ewma_set(&ev->drift[1], ewma_run_scale(&ev->drift[3], ev->dir.cs, ds));
if ((ev->flags[0] & EVENT_FLAG_L && l_mask_norm <= EVENT_END_THRESH)
|| (ev->flags[0] & EVENT_FLAG_R && r_mask_norm <= EVENT_END_THRESH)) {
ev->flags[0] |= EVENT_FLAG_END;
}
if ((ev->t - ev->t_hold >= evc->min_hold_frames && ev->flags[0] & EVENT_FLAG_END)
|| ev->t - ev->t_hold >= evc->max_hold_frames) {
if (ev->t - ev->t_hold < evc->max_hold_frames) ++ev->early_count;
ev->hold = 0;
}
}
else {
const double ds = drift_scale(&drift_last, &ord_d, &env_d, ORD_SENS_ERR, ORD_SENS_LEVEL);
#if DEBUG_PRINT_MIN_RISE_TIME
ev->max_ord_scale = MAXIMUM(ev->max_ord_scale, ds);
#endif
ax->lr = ewma_set(&ev->drift[2], ewma_run_scale(&ev->drift[0], ord.lr, ds));
ax->cs = ewma_set(&ev->drift[3], ewma_run_scale(&ev->drift[1], ord.cs, ds));
ax_ev->lr = ax_ev->cs = 0.0;
}
++ev->t;
}
static void norm_axes(struct axes *ax)
{
const double abs_sum = fabs(ax->lr)+fabs(ax->cs);
if (abs_sum > M_PI_4) {
const double norm = M_PI_4 / abs_sum;
ax->lr *= norm;
ax->cs *= norm;
}
}
static void calc_matrix_coefs(const struct axes *ax, int do_dir_boost, double norm_mult, double surr_mult, struct matrix_coefs *m)
{
const double lr = ax->lr, cs = ax->cs;
const double abs_lr = fabs(lr);
/* The matrix coefficients during front steering are from
"Multichannel matrix surround decoders for two-eared listeners" by
David Griesinger (http://www.davidgriesinger.com/sur.pdf). I've
simplified the equations and corrected gsl so there is full
cancellation when |lr|+|cs|=45°.
*/
const double gl = 1.0+tan(abs_lr-M_PI_4);
const double gsl = gl*gl;
if (cs >= 0.0) {
const double gc = 1.0+tan(cs-M_PI_4);
if (lr >= 0.0) {
m->lsl = 1.0-gsl-0.5*gc;
m->lsr = -0.5*gc-gl;
m->rsl = -0.5*gc;
m->rsr = 1.0-0.5*gc;
}
else {
m->lsl = 1.0-0.5*gc;
m->lsr = -0.5*gc;
m->rsl = -0.5*gc-gl;
m->rsr = 1.0-gsl-0.5*gc;
}
}
else {
if (lr >= 0.0) {
if (cs > -M_PI_4/2) {
m->lsl = 1.0-gsl*(1.0+sin(3.0*cs));
m->lsr = -gl*cos(3.0*cs);
}
else {
m->lsl = 1.0-gsl*(1.0+sin(cs-M_PI_4));
m->lsr = -gl*cos(cs-M_PI_4);
}
m->rsl = 0.0;
m->rsr = 1.0;
}
else {
m->lsl = 1.0;
m->lsr = 0.0;
if (cs > -M_PI_4/2) {
m->rsl = -gl*cos(3.0*cs);
m->rsr = 1.0-gsl*(1.0+sin(3.0*cs));
}
else {
m->rsl = -gl*cos(cs-M_PI_4);
m->rsr = 1.0-gsl*(1.0+sin(cs-M_PI_4));
}
}
}
/* Power correction and scaling */
const double ls_m_scale = norm_mult*surr_mult/sqrt(m->lsl*m->lsl + m->lsr*m->lsr);
const double rs_m_scale = norm_mult*surr_mult/sqrt(m->rsl*m->rsl + m->rsr*m->rsr);
m->lsl *= ls_m_scale;
m->lsr *= ls_m_scale;
m->rsl *= rs_m_scale;
m->rsr *= rs_m_scale;
m->dir_boost = 0.0;
if (do_dir_boost) {
const double b_norm = 1.0-norm_mult;
if (cs > 0.0) {
const double b_gl = 1.0+tan(abs_lr+cs-M_PI_4);
m->dir_boost = b_norm*b_gl*b_gl;
}
else {
const double b_lr = b_norm*gsl;
m->dir_boost = (cs > -M_PI_4/2) ? b_lr*cos(3.0*cs) : b_lr*cos(cs-M_PI_4);
}
}
}
#endif
#endif