-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodules.py
executable file
·471 lines (386 loc) · 15.1 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
from torch import nn
from torch.nn import functional as F
from functools import partial
import torch
import numpy as np
import math
from collections import defaultdict
def MC_dropout(act_vec, p=0.5, mask=True):
return F.dropout(act_vec, p=p, training=mask, inplace=False)
class UncertainFCBlock(nn.Module):
"""
A fully connected neural network, determined by uncertainty_cfg config.
"""
def __init__(
self,
uncertainty_cfg,
in_features,
out_features,
num_hidden_layers,
hidden_features,
outermost_linear=False,
nonlinearity="relu",
omega_0=30,
bias=True,
zero_pad=0,
):
super().__init__()
self.first_layer_init = None
self.zero_pad = zero_pad
nls_and_inits = {
"sine": (
Sine(omega_0),
partial(sine_init, omega_0=omega_0),
partial(first_layer_sine_init),
),
"relu": (nn.ReLU(inplace=True), init_relu, None),
"sigmoid": (nn.Sigmoid(), init_xavier, None),
"tanh": (nn.Tanh(), None, init_xavier, None),
"selu": (nn.SELU(inplace=True), init_selu, None),
"silu": (nn.SiLU(inplace=True), init_selu, None),
"softplus": (nn.Softplus(), init_normal, None),
"elu": (nn.ELU(inplace=True), init_elu, None),
}
nl, nl_weight_init, first_layer_init = nls_and_inits[nonlinearity]
self._net = []
self._net.append(
nn.Sequential(nn.Linear(in_features, hidden_features, bias=bias), nl)
)
for i in range(num_hidden_layers):
self._net.append(
nn.Sequential(
nn.Linear(hidden_features, hidden_features, bias=bias), nl
)
)
if outermost_linear:
self._net.append(
nn.Sequential(nn.Linear(hidden_features, out_features, bias=bias))
)
else:
self._net.append(
nn.Sequential(
nn.Linear(hidden_features, out_features, bias=bias), nn.Sigmoid()
)
)
self.net = nn.Sequential(*self._net)
self.net.apply(nl_weight_init)
if first_layer_init is not None: # Initialization for SIREN first layer.
self.net[0].apply(first_layer_init)
self.width = hidden_features
self.uncertainty_cfg = uncertainty_cfg
self.output_dim = out_features
def forward(self, coords, sample=True):
output_mean = coords
for i, layer in enumerate(self.net):
if self.uncertainty_cfg.pdrop > 0 and i > 0:
output_mean = MC_dropout(
output_mean,
self.uncertainty_cfg.pdrop,
mask=self.training or sample,
)
output_mean = layer(output_mean)
layer = None
del layer
if self.zero_pad > 0:
output_width = int(np.sqrt(output_mean.size()[1]))
padding = self.zero_pad
output_mean = output_mean.reshape((output_width, output_width))
output_mean = torch.nn.functional.pad(
output_mean, (padding, padding, padding, padding)
)
output_mean = output_mean.reshape((1, -1, 1))
return {"mean": output_mean}
def sample_predict(self, coords, Nsamples):
# Sample and aggregate over multiple forward passes
predictions = defaultdict(list)
for i in range(Nsamples):
y = self.forward(coords, sample=True)
for key in y:
predictions[key].append(y[key])
for key, val in predictions.items():
if val[0] is not None:
predictions[key] = torch.cat(val)
else:
predictions[key] = None
return predictions
class UncertaINR(nn.Module):
""" "Base UncertaINR model class"""
def __init__(
self,
uncertainty_cfg,
out_features=1,
type="sine",
in_features=2,
mode="mlp",
embed_width=1,
hidden_features=256,
num_hidden_layers=3,
omega_0=30,
bias=True,
zero_pad=0,
**kwargs,
):
super().__init__()
self.mode = mode
self.zero_pad = zero_pad
if self.mode == "rbf":
self.rbf_layer = RBFLayer(
in_features=in_features,
out_features=kwargs.get("rbf_centers", 1024),
omega_0=omega_0,
)
in_features = kwargs.get("rbf_centers", 1024)
elif self.mode == "nerf":
self.positional_encoding = PosEncodingNeRF(
in_features=in_features,
sidelength=kwargs.get("sidelength", None),
fn_samples=kwargs.get("fn_samples", None),
use_nyquist=kwargs.get("use_nyquist", False),
)
in_features = self.positional_encoding.out_dim
elif self.mode == "rff_enc":
self.positional_encoding = PosEncodingRFF(
in_features=in_features,
out_dim=int(embed_width / 2),
omega_0=omega_0,
b_params=True,
)
in_features = self.positional_encoding.out_dim
self.net = UncertainFCBlock(
uncertainty_cfg,
in_features=in_features,
out_features=out_features,
num_hidden_layers=num_hidden_layers,
hidden_features=hidden_features,
outermost_linear=kwargs.get("outermost_linear", True),
nonlinearity=type,
omega_0=omega_0,
bias=bias,
zero_pad=zero_pad,
)
self.uncertainty_cfg = uncertainty_cfg
self.zero_pad = zero_pad
print(self)
def process_coords(self, coords):
# Various input processing methods for different applications
if self.mode == "rbf":
coords = self.rbf_layer(coords)
elif self.mode in ["nerf", "rff_enc"]:
coords = self.positional_encoding(coords)
return coords
def forward(self, model_input):
coords_org = model_input["coords"].clone().detach()
coords = self.process_coords(coords_org)
output = self.net(coords)
out_dct = {
"model_in": coords_org,
"model_out": output["mean"],
}
return out_dct
def sample_predict(self, model_input, Nsamples):
coords = model_input["coords"]
processed_coords = self.process_coords(coords)
output = self.net.sample_predict(processed_coords, Nsamples)
return {
"model_in": coords,
"model_out": output["mean"],
}
class Ensemble:
"""
A container class for ensembles which holds a group of baselearners
"""
def __init__(self, baselearners):
self.baselearners = baselearners
self.ensemble_size = len(self.baselearners)
def sample_predict(self, model_input, Nsamples=1):
# Sample and aggregate over multiple forward passes and baselearners
coords = model_input["coords"]
predictions = defaultdict(list)
for _, bslr in enumerate(self.baselearners):
bslr.cuda()
num_samples = int(Nsamples / self.ensemble_size)
num_samples = max(num_samples, 1)
output = bslr.sample_predict(model_input, num_samples)
for key in output:
predictions[key].append(output[key])
output = None
del output
bslr.cpu()
del bslr
torch.cuda.empty_cache()
for key, val in predictions.items():
if val[0] is not None:
predictions[key] = torch.cat(val)
else:
predictions[key] = None
predictions.update({"model_in": coords})
return predictions
class PixelLookup(nn.Linear, nn.Module):
""" "Returns weight parameters, for Grid of Pixels."""
__doc__ = nn.Linear.__doc__
def forward(self, dummy_input):
return self.weight.T.unsqueeze(0)
class GridOfPixels(nn.Module):
def __init__(self, in_features, out_features, zero_pad=0, pad_val=0):
super().__init__()
self.zero_pad = zero_pad
self.pad_val = pad_val
self.net = []
self.net.append(
nn.Sequential(
PixelLookup(in_features, out_features, bias=False), nn.Sigmoid()
)
)
self.net = nn.Sequential(*self.net)
self.net.apply(init_weights_gop)
def forward(self, input, **kwargs):
coords = input["coords"].clone().detach()
output = self.net(coords) # Input is dummy in GOP
if self.zero_pad > 0:
output_width = int(np.sqrt(output.size()[1]))
padding = self.zero_pad
output = output.reshape((output_width, output_width))
output = torch.nn.functional.pad(
output, (padding, padding, padding, padding), value=self.pad_val
)
output = output.reshape((1, -1, 1))
return {"model_in": coords, "model_out": output}
def init_relu(m):
if hasattr(m, "weight"):
nn.init.kaiming_normal_(m.weight, a=0.0, nonlinearity="relu", mode="fan_in")
def init_normal(m):
if hasattr(m, "weight"):
nn.init.kaiming_normal_(m.weight, a=0.0, nonlinearity="relu", mode="fan_in")
def init_selu(m):
if hasattr(m, "weight"):
num_input = m.weight.size(-1)
nn.init.normal_(m.weight, std=1 / math.sqrt(num_input))
def init_elu(m):
if hasattr(m, "weight"):
num_input = m.weight.size(-1)
nn.init.normal_(
m.weight, std=math.sqrt(1.5505188080679277) / math.sqrt(num_input)
)
def init_xavier(m):
if hasattr(m, "weight"):
nn.init.xavier_normal_(m.weight)
def init_weights_gop(m):
if hasattr(m, "weight"):
nn.init.uniform_(m.weight, a=-1.0, b=-1.0)
def sine_init(m, omega_0=30):
with torch.no_grad():
if hasattr(m, "weight"):
num_input = m.weight.size(-1)
m.weight.uniform_(
-np.sqrt(6 / num_input) / omega_0, np.sqrt(6 / num_input) / omega_0
)
def first_layer_sine_init(m, scale=1):
with torch.no_grad():
if hasattr(m, "weight"):
num_input = m.weight.size(-1)
m.weight.uniform_(-scale / num_input, scale / num_input)
class Sine(nn.Module):
# See supplement Sec. 1.5 of SIREN paper for discussion of default frequency 30
def __init__(self, omega_0=30):
super().__init__()
self.omega_0 = omega_0
def forward(self, input):
return torch.sin(self.omega_0 * input)
class PosEncodingNeRF(nn.Module):
"""Module to add positional encoding as in NeRF [Mildenhall et al. 2020]."""
def __init__(self, in_features, sidelength=None, fn_samples=None, use_nyquist=True):
super().__init__()
self.in_features = in_features
if self.in_features == 3:
self.num_frequencies = 10
elif self.in_features == 2:
self.num_frequencies = 4
if use_nyquist:
assert sidelength is not None
if isinstance(sidelength, int):
sidelength = (sidelength, sidelength)
self.num_frequencies = self.get_num_frequencies_nyquist(
min(sidelength[0], sidelength[1])
)
elif self.in_features == 1:
assert fn_samples is not None
self.num_frequencies = 4
if use_nyquist:
self.num_frequencies = self.get_num_frequencies_nyquist(fn_samples)
self.out_dim = in_features + 2 * in_features * self.num_frequencies
def get_num_frequencies_nyquist(self, samples):
nyquist_rate = 1 / (2 * (2 * 1 / samples))
return int(math.floor(math.log(nyquist_rate, 2)))
def forward(self, coords):
in_dim = coords.ndim
coords = coords.view(coords.shape[0], -1, self.in_features)
coords_pos_enc = coords
for i in range(self.num_frequencies):
for j in range(self.in_features):
c = coords[..., j]
sin = torch.unsqueeze(torch.sin((2**i) * np.pi * c), -1)
cos = torch.unsqueeze(torch.cos((2**i) * np.pi * c), -1)
coords_pos_enc = torch.cat((coords_pos_enc, sin, cos), axis=-1)
if in_dim == 2:
return coords_pos_enc.reshape(coords.shape[0], self.out_dim)
else:
return coords_pos_enc.reshape(coords.shape[0], -1, self.out_dim)
class PosEncodingRFF(nn.Module):
"""Module to add RFF encoding as in [Tancik et al. 2020]."""
def __init__(self, in_features, out_dim, omega_0=1, b_params=True):
super().__init__()
self.in_features = in_features
if b_params:
self.bvals = nn.Parameter(
omega_0 * torch.Tensor(np.random.normal(size=(out_dim, in_features)))
)
self.bvals.requires_grad = False
else:
self.bvals = omega_0 * torch.Tensor(
np.random.normal(size=(out_dim, in_features))
)
self.bvals = self.bvals.cuda() # .requires_grad=False
self.avals = torch.Tensor(np.ones(out_dim)).cuda()
self.out_dim = 2 * out_dim
def forward(self, coords):
in_dim = coords.ndim
coords = coords.view(coords.shape[0], -1, self.in_features)
# coords_pos_enc = coords
coords_pos_enc = torch.cat(
[
self.avals * torch.sin((coords) @ self.bvals.T + np.pi / 4),
self.avals * torch.cos((coords) @ self.bvals.T + np.pi / 4),
],
axis=-1,
)
if in_dim == 2:
return coords_pos_enc.reshape(coords.shape[0], self.out_dim)
else:
return coords_pos_enc.reshape(coords.shape[0], -1, self.out_dim)
class RBFLayer(nn.Module):
"""Transforms incoming data using a given radial basis function.
- Input: (1, N, in_features) where N is an arbitrary batch size
- Output: (1, N, out_features) where N is an arbitrary batch size"""
def __init__(self, in_features, out_features, omega_0=10):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.centres = nn.Parameter(torch.Tensor(out_features, in_features))
self.sigmas = nn.Parameter(torch.Tensor(out_features))
self.omega_0 = omega_0
self.reset_parameters()
self.freq = nn.Parameter(np.pi * torch.ones((1, self.out_features)))
def reset_parameters(self):
nn.init.uniform_(self.centres, -1, 1)
nn.init.constant_(self.sigmas, self.omega_0)
def forward(self, input):
if input.ndim == 3:
input = input[0, ...]
size = (input.size(0), self.out_features, self.in_features)
x = input.unsqueeze(1).expand(size)
c = self.centres.unsqueeze(0).expand(size)
distances = torch.sqrt((x - c).pow(2).sum(-1)) * self.sigmas.unsqueeze(0)
return self.gaussian(distances).unsqueeze(0)
def gaussian(self, alpha):
phi = torch.exp(-1 * alpha.pow(2) / 2)
return phi