-
Notifications
You must be signed in to change notification settings - Fork 4
/
inference.py
215 lines (165 loc) · 8.22 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import argparse
import pandas as pd
import re
from tqdm.auto import tqdm
import transformers
import torch
import torchmetrics
import pytorch_lightning as pl
import os
#os.chdir('/opt/ml')
class Dataset(torch.utils.data.Dataset):
def __init__(self, inputs, targets=[]):
self.inputs = inputs
self.targets = targets
# 학습 및 추론 과정에서 데이터를 1개씩 꺼내오는 곳
def __getitem__(self, idx):
# 정답이 있다면 else문을, 없다면 if문을 수행합니다
if len(self.targets) == 0:
return torch.tensor(self.inputs[idx])
else:
return torch.tensor(self.inputs[idx]), torch.tensor(self.targets[idx])
# 입력하는 개수만큼 데이터를 사용합니다
def __len__(self):
return len(self.inputs)
class Dataloader(pl.LightningDataModule):
def __init__(self, model_name, batch_size, shuffle, train_path, dev_path, test_path, predict_path):
super().__init__()
self.model_name = model_name
self.batch_size = batch_size
self.shuffle = shuffle
self.train_path = train_path
self.dev_path = dev_path
self.test_path = test_path
self.predict_path = predict_path
self.train_dataset = None
self.val_dataset = None
self.test_dataset = None
self.predict_dataset = None
self.tokenizer = transformers.AutoTokenizer.from_pretrained(model_name, max_length=160)
self.target_columns = ['label']
self.delete_columns = ['id']
self.text_columns = ['sentence_1', 'sentence_2']
def tokenizing(self, dataframe):
data = []
for idx, item in tqdm(dataframe.iterrows(), desc='tokenizing', total=len(dataframe)):
# 두 입력 문장을 [SEP] 토큰으로 이어붙여서 전처리합니다.
text = '[SEP]'.join([item[text_column] for text_column in self.text_columns])
outputs = self.tokenizer(text, add_special_tokens=True, padding='max_length', truncation=True)
data.append(outputs['input_ids'])
return data
def preprocessing(self, data):
# 안쓰는 컬럼을 삭제합니다.
data = data.drop(columns=self.delete_columns)
# 타겟 데이터가 없으면 빈 배열을 리턴합니다.
try:
targets = data[self.target_columns].values.tolist()
except:
targets = []
# 텍스트 데이터를 전처리합니다.
inputs = self.tokenizing(data)
return inputs, targets
def setup(self, stage='fit'):
if stage == 'fit':
# 학습 데이터와 검증 데이터셋을 호출합니다
train_data = pd.read_csv(self.train_path)
val_data = pd.read_csv(self.dev_path)
# 학습데이터 준비
train_inputs, train_targets = self.preprocessing(train_data)
# 검증데이터 준비
val_inputs, val_targets = self.preprocessing(val_data)
# train 데이터만 shuffle을 적용해줍니다, 필요하다면 val, test 데이터에도 shuffle을 적용할 수 있습니다
self.train_dataset = Dataset(train_inputs, train_targets)
self.val_dataset = Dataset(val_inputs, val_targets)
else:
# 평가데이터 준비
test_data = pd.read_csv(self.test_path)
test_inputs, test_targets = self.preprocessing(test_data)
self.test_dataset = Dataset(test_inputs, test_targets)
predict_data = pd.read_csv(self.predict_path)
predict_inputs, predict_targets = self.preprocessing(predict_data)
self.predict_dataset = Dataset(predict_inputs, [])
def train_dataloader(self):
return torch.utils.data.DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=args.shuffle)
def val_dataloader(self):
return torch.utils.data.DataLoader(self.val_dataset, batch_size=self.batch_size)
def test_dataloader(self):
return torch.utils.data.DataLoader(self.test_dataset, batch_size=self.batch_size)
def predict_dataloader(self):
return torch.utils.data.DataLoader(self.predict_dataset, batch_size=self.batch_size)
class Model(pl.LightningModule):
def __init__(self, model_name, lr):
super().__init__()
self.save_hyperparameters()
self.model_name = model_name
self.lr = lr
# 사용할 모델을 호출합니다.
self.plm = transformers.AutoModelForSequenceClassification.from_pretrained(
pretrained_model_name_or_path=model_name, num_labels=1)
# Loss 계산을 위해 사용될 L1Loss를 호출합니다.
self.loss_func = torch.nn.L1Loss()
def forward(self, x):
x = self.plm(x)['logits']
return x
def training_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = self.loss_func(logits, y.float())
self.log("train_loss", loss)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = self.loss_func(logits, y.float())
self.log("val_loss", loss)
self.log("val_pearson", torchmetrics.functional.pearson_corrcoef(logits.squeeze(), y.squeeze()))
return loss
def test_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
self.log("test_pearson", torchmetrics.functional.pearson_corrcoef(logits.squeeze(), y.squeeze()))
def predict_step(self, batch, batch_idx):
x = batch
logits = self(x)
return logits.squeeze()
def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.parameters(), lr=self.lr)
return optimizer
if __name__ == '__main__':
# 하이퍼 파라미터 등 각종 설정값을 입력받습니다
# 터미널 실행 예시 : python3 run.py --batch_size=64 ...
# 실행 시 '--batch_size=64' 같은 인자를 입력하지 않으면 default 값이 기본으로 실행됩니다
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', default='klue/roberta-small', type=str)
parser.add_argument('--batch_size', default=16, type=int)
parser.add_argument('--max_epoch', default=1, type=int)
parser.add_argument('--shuffle', default=True)
parser.add_argument('--learning_rate', default=1e-5, type=float)
parser.add_argument('--train_path', default='../../data/train.csv')
parser.add_argument('--dev_path', default='../../data/dev.csv')
parser.add_argument('--test_path', default='../../data/test.csv')
parser.add_argument('--predict_path', default='../../data/test.csv')
parser.add_argument('--time_now', default='10261724')
args = parser.parse_args()
# dataloader와 model을 생성합니다.
dataloader = Dataloader(args.model_name, args.batch_size, args.shuffle, args.train_path, args.dev_path,
args.test_path, args.predict_path)
# gpu가 없으면 'gpus=0'을, gpu가 여러개면 'gpus=4'처럼 사용하실 gpu의 개수를 입력해주세요
trainer = pl.Trainer(gpus=1, max_epochs=args.max_epoch, log_every_n_steps=1)
# Inference part
# 저장된 모델로 예측을 진행합니다.
model_name_ch = re.sub('/','_',args.model_name)
output_dir_path = 'output'
output_path = os.path.join(output_dir_path, f'{model_name_ch}_{args.time_now}_model.pt')
model = torch.load(output_path)
predictions = trainer.predict(model=model, datamodule=dataloader)
# 예측된 결과를 형식에 맞게 반올림하여 준비합니다.
predictions = list(round(float(i), 1) for i in torch.cat(predictions))
# output 형식을 불러와서 예측된 결과로 바꿔주고, output.csv로 출력합니다.
output = pd.read_csv('../../data/sample_submission.csv')
output['target'] = predictions
result_dir_path = 'result'
if not os.path.exists(result_dir_path):
os.makedirs(result_dir_path)
result_path = os.path.join(result_dir_path, f'output_{args.time_now}.csv')
output.to_csv(result_path, index=False)