forked from jrh13/hol-light
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathnums.ml
332 lines (285 loc) · 14.3 KB
/
nums.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
(* ========================================================================= *)
(* The axiom of infinity; construction of the natural numbers. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
set_jrh_lexer;;
Pb_printer.set_file_tags ["nums.ml"];;
open System;;
open Lib;;
open Fusion;;
open Basics;;
open Printer;;
open Pb_printer;;
open Parser;;
open Equal;;
open Bool;;
open Tactics;;
open Simp;;
open Theorems;;
open Ind_defs;;
open Class;;
open Meson;;
open Pair;;
(* ------------------------------------------------------------------------- *)
(* Declare a new type "ind" of individuals. *)
(* ------------------------------------------------------------------------- *)
new_type ("ind",0);;
(* ------------------------------------------------------------------------- *)
(* We assert the axiom of infinity as in HOL88, but then we can forget it! *)
(* ------------------------------------------------------------------------- *)
let ONE_ONE = new_definition
`ONE_ONE(f:A->B) = !x1 x2. (f x1 = f x2) ==> (x1 = x2)`;;
let ONTO = new_definition
`ONTO(f:A->B) = !y. ?x. y = f x`;;
let INFINITY_AX = new_axiom
`?f:ind->ind. ONE_ONE f /\ ~(ONTO f)`;;
(* ------------------------------------------------------------------------- *)
(* Actually introduce constants. *)
(* ------------------------------------------------------------------------- *)
let IND_SUC_0_EXISTS = prove
(`?(f:ind->ind) z. (!x1 x2. (f x1 = f x2) = (x1 = x2)) /\ (!x. ~(f x = z))`,
X_CHOOSE_TAC `f:ind->ind` INFINITY_AX THEN EXISTS_TAC `f:ind->ind` THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[ONE_ONE; ONTO] THEN MESON_TAC[]);;
let IND_SUC_SPEC =
let th1 = new_definition
`IND_SUC = @f:ind->ind. ?z. (!x1 x2. (f x1 = f x2) = (x1 = x2)) /\
(!x. ~(f x = z))` in
let th2 = REWRITE_RULE[GSYM th1] (SELECT_RULE IND_SUC_0_EXISTS) in
let th3 = new_definition
`IND_0 = @z:ind. (!x1 x2. IND_SUC x1 = IND_SUC x2 <=> x1 = x2) /\
(!x. ~(IND_SUC x = z))` in
REWRITE_RULE[GSYM th3] (SELECT_RULE th2);;
let IND_SUC_INJ,IND_SUC_0 = CONJ_PAIR IND_SUC_SPEC;;
(* ------------------------------------------------------------------------- *)
(* Carve out the natural numbers inductively. *)
(* ------------------------------------------------------------------------- *)
let NUM_REP_RULES,NUM_REP_INDUCT,NUM_REP_CASES =
new_inductive_definition
`NUM_REP IND_0 /\
(!i. NUM_REP i ==> NUM_REP (IND_SUC i))`;;
let num_tydef = new_basic_type_definition
"num" ("mk_num","dest_num")
(CONJUNCT1 NUM_REP_RULES);;
let ZERO_DEF = new_definition
`_0 = mk_num IND_0`;;
let SUC_DEF = new_definition
`SUC n = mk_num(IND_SUC(dest_num n))`;;
(* ------------------------------------------------------------------------- *)
(* Distinctness and injectivity of constructors. *)
(* ------------------------------------------------------------------------- *)
let NOT_SUC = prove
(`!n. ~(SUC n = _0)`,
REWRITE_TAC[SUC_DEF; ZERO_DEF] THEN
MESON_TAC[NUM_REP_RULES; fst num_tydef; snd num_tydef; IND_SUC_0]);;
let SUC_INJ = prove
(`!m n. SUC m = SUC n <=> m = n`,
REPEAT GEN_TAC THEN REWRITE_TAC[SUC_DEF] THEN
EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
POP_ASSUM(MP_TAC o AP_TERM `dest_num`) THEN
SUBGOAL_THEN `!p. NUM_REP (IND_SUC (dest_num p))` MP_TAC THENL
[GEN_TAC THEN MATCH_MP_TAC (CONJUNCT2 NUM_REP_RULES); ALL_TAC] THEN
REWRITE_TAC[fst num_tydef; snd num_tydef] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[IND_SUC_INJ] THEN
DISCH_THEN(MP_TAC o AP_TERM `mk_num`) THEN
REWRITE_TAC[fst num_tydef]);;
(* ------------------------------------------------------------------------- *)
(* Induction. *)
(* ------------------------------------------------------------------------- *)
let num_INDUCTION = prove
(`!P. P(_0) /\ (!n. P(n) ==> P(SUC n)) ==> !n. P n`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `\i. NUM_REP i /\ P(mk_num i):bool` NUM_REP_INDUCT) THEN
ASM_REWRITE_TAC[GSYM ZERO_DEF; NUM_REP_RULES] THEN
W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 lhand o snd) THENL
[REPEAT STRIP_TAC THENL
[MATCH_MP_TAC(CONJUNCT2 NUM_REP_RULES) THEN ASM_REWRITE_TAC[];
SUBGOAL_THEN `mk_num(IND_SUC i) = SUC(mk_num i)` SUBST1_TAC THENL
[REWRITE_TAC[SUC_DEF] THEN REPEAT AP_TERM_TAC THEN
CONV_TAC "nums.ml:SYM_CONV" SYM_CONV THEN REWRITE_TAC[GSYM(snd num_tydef)] THEN
FIRST_ASSUM MATCH_ACCEPT_TAC;
FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC]];
DISCH_THEN(MP_TAC o SPEC `dest_num n`) THEN
REWRITE_TAC[fst num_tydef; snd num_tydef]]);;
(* ------------------------------------------------------------------------- *)
(* Recursion. *)
(* ------------------------------------------------------------------------- *)
let num_Axiom = prove
(`!(e:A) f. ?!fn. (fn _0 = e) /\
(!n. fn (SUC n) = f (fn n) n)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[EXISTS_UNIQUE_THM] THEN CONJ_TAC THENL
[(MP_TAC o prove_inductive_relations_exist)
`PRG _0 e /\ (!b:A n:num. PRG n b ==> PRG (SUC n) (f b n))` THEN
DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (ASSUME_TAC o GSYM)) THEN
SUBGOAL_THEN `!n:num. ?!y:A. PRG n y` MP_TAC THENL
[MATCH_MP_TAC num_INDUCTION THEN REPEAT STRIP_TAC THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC "nums.ml:BINDER_CONV" BINDER_CONV [GSYM th]) THEN
REWRITE_TAC[GSYM NOT_SUC; NOT_SUC; SUC_INJ; EXISTS_UNIQUE_REFL] THEN
REWRITE_TAC[UNWIND_THM1] THEN
UNDISCH_TAC `?!y. PRG (n:num) (y:A)` THEN
REWRITE_TAC[EXISTS_UNIQUE_THM] THEN
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `y:A`) ASSUME_TAC) THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[MAP_EVERY EXISTS_TAC [`(f:A->num->A) y n`; `y:A`];
AP_THM_TAC THEN AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC] THEN
ASM_REWRITE_TAC[];
REWRITE_TAC[UNIQUE_SKOLEM_ALT] THEN
DISCH_THEN(X_CHOOSE_THEN `fn:num->A` (ASSUME_TAC o GSYM)) THEN
EXISTS_TAC `fn:num->A` THEN ASM_REWRITE_TAC[] THEN
GEN_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o CONJUNCT2) THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC "nums.ml:I" I [GSYM th]) THEN REFL_TAC];
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[FUN_EQ_THM] THEN
MATCH_MP_TAC num_INDUCTION THEN ASM_REWRITE_TAC[] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* The basic numeral tag; rewrite existing instances of "_0". *)
(* ------------------------------------------------------------------------- *)
let NUMERAL =
let num_ty = type_of(lhand(concl ZERO_DEF)) in
let funn_ty = mk_fun_ty num_ty num_ty in
let numeral_tm = mk_var("NUMERAL",funn_ty) in
let n_tm = mk_var("n",num_ty) in
new_definition(mk_eq(mk_comb(numeral_tm,n_tm),n_tm));;
let [NOT_SUC; num_INDUCTION; num_Axiom] =
let th = prove(`_0 = 0`,REWRITE_TAC[NUMERAL]) in
map (GEN_REWRITE_RULE DEPTH_CONV [th])
[NOT_SUC; num_INDUCTION; num_Axiom];;
(* ------------------------------------------------------------------------- *)
(* Induction tactic. *)
(* ------------------------------------------------------------------------- *)
let (INDUCT_TAC:tactic) =
MATCH_MP_TAC num_INDUCTION THEN
CONJ_TAC THENL [ALL_TAC; GEN_TAC THEN DISCH_TAC];;
let num_RECURSION =
let avs = fst(strip_forall(concl num_Axiom)) in
GENL avs (EXISTENCE (SPECL avs num_Axiom));;
(* ------------------------------------------------------------------------- *)
(* Cases theorem. *)
(* ------------------------------------------------------------------------- *)
let num_CASES = prove
(`!m. (m = 0) \/ (?n. m = SUC n)`,
INDUCT_TAC THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Augmenting inductive type store. *)
(* ------------------------------------------------------------------------- *)
let num_RECURSION_STD = prove
(`!e:Z f. ?fn. (fn 0 = e) /\ (!n. fn (SUC n) = f n (fn n))`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`e:Z`; `(\z n. (f:num->Z->Z) n z)`] num_RECURSION) THEN
REWRITE_TAC[]);;
inductive_type_store :=
("num",(2,num_INDUCTION,num_RECURSION_STD))::(!inductive_type_store);;
(* ------------------------------------------------------------------------- *)
(* "Bitwise" binary representation of numerals. *)
(* ------------------------------------------------------------------------- *)
let BIT0_DEF =
let funn_ty = type_of(rator(lhand(snd(dest_forall(concl NUMERAL))))) in
let bit0_tm = mk_var("BIT0",funn_ty) in
let def = new_definition
(mk_eq(bit0_tm,`@fn. fn 0 = 0 /\ (!n. fn (SUC n) = SUC (SUC(fn n)))`))
and th = BETA_RULE(ISPECL [`0`; `\m n:num. SUC(SUC m)`] num_RECURSION) in
REWRITE_RULE[GSYM def] (SELECT_RULE th);;
let BIT1_DEF =
let funn_ty = type_of(rator(lhand(lhand(concl BIT0_DEF)))) in
let num_ty = snd(dest_fun_ty funn_ty) in
let n_tm = mk_var("n",num_ty) in
let bit1_tm = mk_var("BIT1",funn_ty) in
new_definition(mk_eq(mk_comb(bit1_tm,n_tm),`SUC (BIT0 n)`));;
(* ------------------------------------------------------------------------- *)
(* Syntax operations on numerals. *)
(* ------------------------------------------------------------------------- *)
let mk_numeral =
let pow24 = pow2 24 and num_0 = Int 0
and zero_tm = mk_const("_0",[])
and BIT0_tm = mk_const("BIT0",[])
and BIT1_tm = mk_const("BIT1",[])
and NUMERAL_tm = mk_const("NUMERAL",[]) in
let rec stripzeros l = match l with false::t -> stripzeros t | _ -> l in
let rec raw_list_of_num l n =
if n =/ num_0 then stripzeros l else
let h = Num.int_of_num(mod_num n pow24) in
raw_list_of_num
((h land 8388608 <> 0)::(h land 4194304 <> 0)::(h land 2097152 <> 0)::
(h land 1048576 <> 0)::(h land 524288 <> 0)::(h land 262144 <> 0)::
(h land 131072 <> 0)::(h land 65536 <> 0)::(h land 32768 <> 0)::
(h land 16384 <> 0)::(h land 8192 <> 0)::(h land 4096 <> 0)::
(h land 2048 <> 0)::(h land 1024 <> 0)::(h land 512 <> 0)::
(h land 256 <> 0)::(h land 128 <> 0)::(h land 64 <> 0)::
(h land 32 <> 0)::(h land 16 <> 0)::(h land 8 <> 0)::(h land 4 <> 0)::
(h land 2 <> 0)::(h land 1 <> 0)::l) (quo_num n pow24) in
let rec numeral_of_list t l =
match l with
[] -> t
| b::r -> numeral_of_list(mk_comb((if b then BIT1_tm else BIT0_tm),t)) r in
let mk_raw_numeral n = numeral_of_list zero_tm (raw_list_of_num [] n) in
fun n -> if n </ num_0 then failwith "mk_numeral: negative argument" else
mk_comb(NUMERAL_tm,mk_raw_numeral n);;
let mk_small_numeral n = mk_numeral(Int n);;
let dest_small_numeral t = Num.int_of_num(dest_numeral t);;
let is_numeral = can dest_numeral;;
(* ------------------------------------------------------------------------- *)
(* Derived principles of definition based on existence. *)
(* *)
(* This is put here because we use numerals as tags to force different *)
(* constants specified with equivalent theorems to have different underlying *)
(* definitions, ensuring that there are no provable equalities between them *)
(* and so in some sense the constants are "underspecified" as the user might *)
(* want for some applications. *)
(* ------------------------------------------------------------------------- *)
let the_specifications = Hashtbl.create 1024;;
let remember_specification : string list * thm -> thm -> unit =
Hashtbl.add the_specifications;;
let find_specification (input: string list * thm) : thm option =
try Some (Hashtbl.find the_specifications input)
with Not_found -> None;;
let new_specification_log_opt (log: bool) =
let code c = mk_small_numeral (Char.code (c.[0])) in
let mk_code name =
end_itlist (curry mk_pair) (map code (explode name)) in
let check_distinct l =
try ignore (itlist (fun t res -> if mem t res then fail() else t::res) l []); true
with Failure _ -> false in
let specify name th =
let ntm = mk_code name in
let gv = genvar(type_of ntm) in
let th0 = CONV_RULE(REWR_CONV SKOLEM_THM) (GEN gv th) in
let th1 = CONV_RULE(RATOR_CONV (REWR_CONV EXISTS_THM) THENC
BETA_CONV) th0 in
let l,r = dest_comb(concl th1) in
let rn = mk_comb(r,ntm) in
let ty = type_of rn in
let th2 = new_definition_log_opt false (mk_eq(mk_var(name,ty),rn)) in
GEN_REWRITE_RULE ONCE_DEPTH_CONV [GSYM th2]
(SPEC ntm (CONV_RULE BETA_CONV th1)) in
let rec specifies names th =
match names with
[] -> th
| name::onames -> let th' = specify name th in
specifies onames th' in
fun (names: string list) (th: thm) ->
match find_specification (names, th) with
Some thm ->
warn true ("Benign respecification");
thm
| None ->
let asl,c = dest_thm th in
if not (asl = []) then
failwith "new_specification: Assumptions not allowed in theorem" else
if not (frees c = []) then
failwith "new_specification: Free variables in predicate" else
let avs = fst(strip_exists c) in
if length names = 0 || length names > length avs then
failwith "new_specification: Unsuitable number of constant names" else
if not (check_distinct names) then
failwith "new_specification: Constant names not distinct"
else
let sth = specifies names th in
remember_specification (names, th) sth;
thm_db_print_specification log "SPEC" names th sth;
sth;;
let new_specification = new_specification_log_opt true;;
Pb_printer.clear_file_tags();;