-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcartpole_local.py
304 lines (245 loc) · 9.39 KB
/
cartpole_local.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Supervised meta learning of random sinusoid function."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from copy import deepcopy
import os
import pickle
import numpy as np
import tensorflow as tf
import cartpole
import cartpole_utils
from library.meta_q import MetaQ
from library.meta_q import QPolicy
from misc_utils import define_flags_with_default
from misc_utils import TensorBoardLogger
flags_def = define_flags_with_default(
goal_x=0.0,
min_goal_x=-4,
max_goal_x=4,
x_threshold=6,
max_reward_for_dist=1.0,
reward_per_time_step=0.0,
fixed_initial_state=False,
use_vizier=True, # Turn this flag off to run locally
report_steps=100,
vizier_objective='reward',
# General
output_dir='/tmp/meta_q_cartpole',
random_seed=42,
# Network specific
nn_arch='512-512-512',
activation='relu',
outer_loop_steps=3000,
# Env specific
n_meta_tasks=8,
inner_loop_n_trajs=8,
outer_loop_n_trajs=8,
outer_loop_greedy_eval_n_trajs=100,
inner_loop_data_collection='epsilon_greedy',
inner_loop_greedy_epsilon=0.1,
inner_loop_bolzmann_temp=1.0,
outer_loop_data_collection='epsilon_greedy',
outer_loop_greedy_epsilon=0.1,
outer_loop_bolzmann_temp=1.0,
fixed_env=False,
# MetaQ specific
discount_factor=0.9,
inner_loop_gradient_clipping=0.0,
outer_loop_gradient_clipping=0.0,
inner_loop_learning_rate=0.1,
outer_loop_learning_rate=0.001,
# policy_gradient_outer_loop=False, # Currently not supported!
inner_loop_residual_gradient=False,
outer_loop_residual_gradient=False,
inner_loop_q_loss_type='l2',
outer_loop_q_loss_type='l2',
inner_loop_soft_q=False,
outer_loop_soft_q=False,
inner_loop_soft_q_temperature=1.0,
outer_loop_soft_q_temperature=1.0,
inner_loop_online_target=True,
inner_loop_double_q=False,
inner_loop_steps=1,
inner_loop_stop_gradient=False,
inner_loop_optimizer='sgd',
outer_loop_optimizer='momentum',
outer_loop_optimizer_first_momentum=0.9,
outer_loop_optimizer_second_momentum=0.999,
debug_inner_loop_ground_truth=False,
debug_outer_loop_ground_truth=False,
create_video_locally=False,
use_hparam_search=False,
)
def fully_connected_net(nn_arch='512-512-512', activation='relu'):
activation_function = {
'relu': tf.nn.relu,
'leaky_relu': tf.nn.leaky_relu,
'selu': tf.nn.selu,
'elu': tf.nn.elu,
}[activation]
def forward(observation):
N_ACTIONS = 2
if nn_arch == '':
hidden_dims = []
else:
hidden_dims = [int(x) for x in nn_arch.split('-')]
x = observation
for hd in hidden_dims:
x = tf.layers.dense(x, hd)
x = activation_function(x)
x = tf.layers.dense(x, N_ACTIONS)
return x
return forward
def run_experiment(study_hparams=None, trial_handle=None):
FLAGS = deepcopy(tf.app.flags.FLAGS)
if FLAGS.use_hparam_search:
for key, val in study_hparams.values().items():
setattr(FLAGS, key, val)
tf.reset_default_graph()
np.random.seed(FLAGS.random_seed)
tf.set_random_seed(FLAGS.random_seed)
# Initialize env
kwargs = {
'goal_x': FLAGS.goal_x,
'min_goal_x': FLAGS.min_goal_x,
'max_goal_x': FLAGS.max_goal_x,
'x_threshold': FLAGS.x_threshold,
'max_reward_for_dist': FLAGS.max_reward_for_dist,
'reward_per_time_step': FLAGS.reward_per_time_step,
'fixed_initial_state': FLAGS.fixed_initial_state,
}
env = cartpole.make_env(kwargs)
if not FLAGS.fixed_env:
env.env.randomize()
if trial_handle:
tensorboard_path = os.path.join(FLAGS.output_dir, trial_handle)
else:
tensorboard_path = FLAGS.output_dir
tf.gfile.MakeDirs(tensorboard_path)
with tf.gfile.Open(os.path.join(tensorboard_path, 'env_args'), mode='wb') as f:
f.write(pickle.dumps(kwargs))
kwargs = dict(
observation_shape=[None] + list(env.observation_space.shape),
action_dim=1
)
default_hps = MetaQ.get_default_config().values()
for key in flags_def:
if key in default_hps:
kwargs[key] = getattr(FLAGS, key)
hps = tf.HParams(**kwargs)
meta_q = MetaQ(hps, fully_connected_net(FLAGS.nn_arch, FLAGS.activation))
meta_q.build_graph()
init_op = tf.global_variables_initializer()
logger = TensorBoardLogger(tensorboard_path)
with tf.Session() as sess:
sess.run(init_op)
meta_q.init_session(sess)
for outer_step in range(FLAGS.outer_loop_steps):
pre_update_rewards = []
post_update_rewards = []
post_update_greedy_rewards = []
finetuned_policy = None
for task_id in range(FLAGS.n_meta_tasks):
print('Task: {}'.format(task_id))
if not FLAGS.fixed_env:
env.env.randomize()
# Inner loop
if FLAGS.inner_loop_data_collection == 'random':
policy = None
else:
q_func = meta_q.get_pre_update_q_function()
if FLAGS.inner_loop_data_collection == 'epsilon_greedy':
policy = QPolicy(q_func, epsilon=FLAGS.inner_loop_greedy_epsilon)
elif FLAGS.inner_loop_data_collection == 'bolzmann':
policy = QPolicy(
q_func, bolzmann=True,
bolzmann_temp=FLAGS.inner_loop_bolzmann_temp
)
(inner_observations, inner_actions, inner_rewards,
inner_next_observations, inner_dones) = cartpole_utils.collect_data(
env, n_trajs=FLAGS.inner_loop_n_trajs, policy=policy)
pre_update_rewards.append(np.sum(
inner_rewards) / FLAGS.inner_loop_n_trajs)
# Evaluating true rewards
post_update_q_func = meta_q.get_post_update_q_function(
inner_observations, inner_actions, inner_rewards,
inner_next_observations, inner_dones
)
policy = QPolicy(post_update_q_func, epsilon=0.0)
_, _, greedy_rewards, _, _ = cartpole_utils.collect_data(
env, n_trajs=FLAGS.outer_loop_greedy_eval_n_trajs, policy=policy
)
post_update_greedy_rewards.append(
np.sum(greedy_rewards) / FLAGS.outer_loop_greedy_eval_n_trajs
)
finetuned_policy = policy
# Outer loop
if FLAGS.outer_loop_data_collection == 'random':
policy = None
else:
if FLAGS.outer_loop_data_collection == 'epsilon_greedy':
policy = QPolicy(
post_update_q_func, epsilon=FLAGS.outer_loop_greedy_epsilon
)
elif FLAGS.outer_loop_data_collection == 'bolzmann':
policy = QPolicy(
post_update_q_func, bolzmann=True,
bolzmann_temp=FLAGS.outer_loop_bolzmann_temp
)
(outer_observations, outer_actions, outer_rewards,
outer_next_observations, outer_dones) = cartpole_utils.collect_data(
env, n_trajs=FLAGS.outer_loop_n_trajs, policy=policy)
post_update_rewards.append(np.sum(
outer_rewards) / FLAGS.outer_loop_n_trajs)
meta_q.accumulate_gradient(
inner_observations, inner_actions, inner_rewards,
inner_next_observations, inner_dones,
outer_observations, outer_actions, outer_rewards,
outer_next_observations, outer_dones,
)
pre_update_loss, post_update_loss = meta_q.run_train_step()
pre_update_reward = np.mean(pre_update_rewards)
post_update_reward = np.mean(post_update_rewards)
post_update_greedy_reward = np.mean(post_update_greedy_rewards)
post_update_greedy_reward_variance = np.var(post_update_greedy_rewards)
log_data = dict(
pre_update_loss=pre_update_loss,
post_update_loss=post_update_loss,
pre_update_reward=pre_update_reward,
post_update_reward=post_update_reward,
post_update_greedy_reward=post_update_greedy_reward,
post_update_greedy_reward_variance=post_update_greedy_reward_variance,
goal_x=env.env.goal_x,
)
print('Outer step: {}, '.format(outer_step), log_data)
logger.log_dict(outer_step, log_data)
if FLAGS.create_video_locally:
video_path = os.path.join(tensorboard_path, 'video.mp4')
else:
video_path = None
observations, actions, rewards, next_observations, dones = cartpole_utils.collect_data(
env, time_steps=1000, n_trajs=1, policy=finetuned_policy, render_path=video_path,
state_path=os.path.join(tensorboard_path, 'state'))
print('Number of actions: ', len(actions))
print('Total reward: ', np.sum(rewards))
print('Dones: ', dones)
with tf.gfile.Open(os.path.join(tensorboard_path, 'actions'), mode='wb') as f:
f.write(pickle.dumps(actions))
with tf.gfile.Open(os.path.join(tensorboard_path, 'dones'), mode='wb') as f:
f.write(pickle.dumps(dones))
with tf.gfile.Open(os.path.join(tensorboard_path, 'goal'), mode='wb') as f:
f.write(pickle.dumps(env.env.goal_x))