This repository has been archived by the owner on Sep 7, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrouge_scorer_test.py
68 lines (48 loc) · 1.92 KB
/
rouge_scorer_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for rouge_scorer module."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import test_util
import rouge_scorer
import vocabulary
class ROUGEScorerTest(test_util.TensorFlowTestCase):
def test_rouge(self):
with self.test_session() as session:
vocab_string = """<UNK>\t1\t<UNK>\t1
foo\t1\tfoo\t1
bar\t1\tba\t0
baz\t1\tba\t0"""
vocab = vocabulary.parse_vocabulary(vocab_string.split("\n"))
pred_doc = "bar"
gold_doc = "foo bar bar"
# foo is a stopword and baz and bar have same stem, so this
# should have ROUGE=1.0
def make_bag(doc, vocab):
bag = np.zeros([len(vocab.words)], dtype=np.float32)
for tok in doc.split(" "):
bag[vocab.word_indices[tok]] += 1.0
return bag
pred_bag = tf.expand_dims(make_bag(pred_doc, vocab), 0)
gold_bag = tf.expand_dims(make_bag(gold_doc, vocab), 0)
scorer = rouge_scorer.ROUGEScorer(vocab)
rouge = scorer.get_rouge_recall(pred_bag, gold_bag)
rouge_np = session.run([rouge])
self.assertNear(rouge_np[0], 1.0, 0.0001)
if __name__ == "__main__":
tf.test.main()