diff --git a/brainpy/_src/math/sparse/tests/csr_matmat_VS_cusparse_csr_matmat.py b/brainpy/_src/math/sparse/tests/csr_matmat_VS_cusparse_csr_matmat.py index 79fe387b..61c3f8c4 100644 --- a/brainpy/_src/math/sparse/tests/csr_matmat_VS_cusparse_csr_matmat.py +++ b/brainpy/_src/math/sparse/tests/csr_matmat_VS_cusparse_csr_matmat.py @@ -2,20 +2,20 @@ import time from functools import partial +import numpy as np + +os.environ["CUDA_VISIBLE_DEVICES"] = "2" + import jax import jax.numpy as jnp import pandas as pd +import taichi as ti from jax.experimental.sparse import csr import brainpy as bp import brainpy.math as bm -from brainpy._src.dependency_check import import_taichi -from brainpy._src.math.interoperability import as_jax -from brainpy._src.math.op_register import XLACustomOp - -ti = import_taichi(error_if_not_found=False) -bm.set_platform('cpu') +bm.set_platform('gpu') size = [ (100, 100, 100), @@ -37,7 +37,7 @@ ] events_type = ['float'] transpose = [ - True, + # True, False ] ITERATION = 10 @@ -92,17 +92,17 @@ def _csr_matmat_homo(col_indices: ti.types.ndarray(ndim=1), # transpose homo -_csr_matmat_transpose_homo_p = XLACustomOp(cpu_kernel=_csr_matmat_transpose_homo_cpu, - gpu_kernel=_csr_matmat_transpose_homo_gpu) +_csr_matmat_transpose_homo_p = bm.XLACustomOp(cpu_kernel=_csr_matmat_transpose_homo_cpu, + gpu_kernel=_csr_matmat_transpose_homo_gpu) # no transpose homo -_csr_matmat_homo_p = XLACustomOp(cpu_kernel=_csr_matmat_homo, gpu_kernel=_csr_matmat_homo) +_csr_matmat_homo_p = bm.XLACustomOp(cpu_kernel=_csr_matmat_homo, gpu_kernel=_csr_matmat_homo) def taichi_csrmm(weight, indices, indptr, matrix, shape, transpose): - indices = as_jax(indices) - indptr = as_jax(indptr) - matrix = as_jax(matrix) + indices = bm.as_jax(indices) + indptr = bm.as_jax(indptr) + matrix = bm.as_jax(matrix) weight = jnp.atleast_1d(weight) out_shape = shape[1] if transpose else shape[0] result_shape = (out_shape, matrix.shape[1]) @@ -120,9 +120,9 @@ def taichi_csrmm(weight, indices, indptr, matrix, shape, transpose): def jaxlib_csrmm(weight, indices, indptr, matrix, shape, transpose): - indices = as_jax(indices) - indptr = as_jax(indptr) - matrix = as_jax(matrix) + indices = bm.as_jax(indices) + indptr = bm.as_jax(indptr) + matrix = bm.as_jax(matrix) weight = jnp.atleast_1d(weight) return csr.csr_matmat_p.bind(weight, indices, indptr, matrix, shape=shape, transpose=transpose) @@ -321,49 +321,35 @@ def test_sparse_csrmm(shape, values_type, events_type, transpose): 'brainpy time1(ms)', 'brainpy time2(ms)', 'brainpy time3(ms)', 'brainpy time4(ms)', 'brainpy time5(ms)', 'brainpy time6(ms)', 'brainpy time7(ms)', 'brainpy time8(ms)', 'brainpy time9(ms)', 'brainpy time10(ms)']) -### RECTANGULAR MATRIX -if (bm.get_platform() == 'cpu'): - for shape in size: - for _values_type in values_type: - for _events_type in events_type: - for _transpose in transpose: - taichi_aot_time_1, taichi_aot_time_2, taichi_aot_time_3, taichi_aot_time_4, taichi_aot_time_5, \ - taichi_aot_time_6, taichi_aot_time_7, taichi_aot_time_8, taichi_aot_time_9, taichi_aot_time_10, \ - brainpy_time_1, brainpy_time_2, brainpy_time_3, brainpy_time_4, brainpy_time_5, \ - brainpy_time_6, brainpy_time_7, brainpy_time_8, brainpy_time_9, brainpy_time_10 = test_sparse_csrmm(shape, - _values_type, - _events_type, - _transpose) - # append to dataframe - df.loc[df.shape[0]] = [shape, 0.5, shape[0], shape[1], shape[2], 'cpu', _values_type, _events_type, - _transpose, - taichi_aot_time_1, taichi_aot_time_2, taichi_aot_time_3, taichi_aot_time_4, - taichi_aot_time_5, - taichi_aot_time_6, taichi_aot_time_7, taichi_aot_time_8, taichi_aot_time_9, - taichi_aot_time_10, - brainpy_time_1, brainpy_time_2, brainpy_time_3, brainpy_time_4, brainpy_time_5, - brainpy_time_6, brainpy_time_7, brainpy_time_8, brainpy_time_9, brainpy_time_10] - df.to_csv(f'{PATH}/csrmm_cpu.csv', index=False) - -if (bm.get_platform() == 'gpu'): - for shape in size: - for _values_type in values_type: - for _events_type in events_type: - for _transpose in transpose: - taichi_aot_time_1, taichi_aot_time_2, taichi_aot_time_3, taichi_aot_time_4, taichi_aot_time_5, \ - taichi_aot_time_6, taichi_aot_time_7, taichi_aot_time_8, taichi_aot_time_9, taichi_aot_time_10, \ - brainpy_time_1, brainpy_time_2, brainpy_time_3, brainpy_time_4, brainpy_time_5, \ - brainpy_time_6, brainpy_time_7, brainpy_time_8, brainpy_time_9, brainpy_time_10 = test_sparse_csrmm(shape, - _values_type, - _events_type, - _transpose) - # append to dataframe - df.loc[df.shape[0]] = [shape, 0.5, shape[0], shape[1], shape[2], 'gpu', _values_type, _events_type, - _transpose, - taichi_aot_time_1, taichi_aot_time_2, taichi_aot_time_3, taichi_aot_time_4, - taichi_aot_time_5, - taichi_aot_time_6, taichi_aot_time_7, taichi_aot_time_8, taichi_aot_time_9, - taichi_aot_time_10, - brainpy_time_1, brainpy_time_2, brainpy_time_3, brainpy_time_4, brainpy_time_5, - brainpy_time_6, brainpy_time_7, brainpy_time_8, brainpy_time_9, brainpy_time_10] - df.to_csv(f'{PATH}/csrmm_gpu.csv', index=False) +for shape in size: + for _values_type in values_type: + for _events_type in events_type: + for _transpose in transpose: + taichi_aot_time_1, taichi_aot_time_2, taichi_aot_time_3, taichi_aot_time_4, taichi_aot_time_5, \ + taichi_aot_time_6, taichi_aot_time_7, taichi_aot_time_8, taichi_aot_time_9, taichi_aot_time_10, \ + brainpy_time_1, brainpy_time_2, brainpy_time_3, brainpy_time_4, brainpy_time_5, \ + brainpy_time_6, brainpy_time_7, brainpy_time_8, brainpy_time_9, brainpy_time_10 = test_sparse_csrmm(shape, + _values_type, + _events_type, + _transpose) + # append to dataframe + df.loc[df.shape[0]] = [shape, 0.5, shape[0], shape[1], shape[2], 'gpu', _values_type, _events_type, + _transpose, + taichi_aot_time_1, taichi_aot_time_2, taichi_aot_time_3, taichi_aot_time_4, + taichi_aot_time_5, + taichi_aot_time_6, taichi_aot_time_7, taichi_aot_time_8, taichi_aot_time_9, + taichi_aot_time_10, + brainpy_time_1, brainpy_time_2, brainpy_time_3, brainpy_time_4, brainpy_time_5, + brainpy_time_6, brainpy_time_7, brainpy_time_8, brainpy_time_9, brainpy_time_10] + + print(shape, _values_type, _events_type, _transpose) + a = np.asarray([taichi_aot_time_1, taichi_aot_time_2, taichi_aot_time_3, taichi_aot_time_4, + taichi_aot_time_5, + taichi_aot_time_6, taichi_aot_time_7, taichi_aot_time_8, taichi_aot_time_9, + taichi_aot_time_10]) + b = np.asarray([brainpy_time_1, brainpy_time_2, brainpy_time_3, brainpy_time_4, brainpy_time_5, + brainpy_time_6, brainpy_time_7, brainpy_time_8, brainpy_time_9, brainpy_time_10]) + print(a) + print(b) + print(a.sum() / b.sum()) + df.to_csv(f'{PATH}/csrmm_{bm.get_platform()}.csv', index=False)