From 9ca2d6c4e342e694cef1cc3152c92ea40976dadb Mon Sep 17 00:00:00 2001 From: Chaoming Wang Date: Sat, 9 Mar 2024 21:23:32 +0800 Subject: [PATCH] add `skopt` Optimization methods --- brainpy/_src/optimizers/base.py | 36 +++++++++ brainpy/_src/optimizers/skopt_bayesian.py | 98 +++++++++++++++++++++++ 2 files changed, 134 insertions(+) create mode 100644 brainpy/_src/optimizers/base.py create mode 100644 brainpy/_src/optimizers/skopt_bayesian.py diff --git a/brainpy/_src/optimizers/base.py b/brainpy/_src/optimizers/base.py new file mode 100644 index 00000000..26849ad1 --- /dev/null +++ b/brainpy/_src/optimizers/base.py @@ -0,0 +1,36 @@ +import abc + +from tqdm.auto import tqdm + +__all__ = ['Optimizer'] + + +class Optimizer(metaclass=abc.ABCMeta): + """ + Optimizer class created as a base for optimization initialization and + performance with different libraries. To be used with modelfitting + Fitter. + """ + + @abc.abstractmethod + def initialize(self, *args, **kwargs): + """ + Initialize the instrumentation for the optimization, based on + parameters, creates bounds for variables and attaches them to the + optimizer + """ + pass + + @abc.abstractmethod + def one_trial(self, *args, **kwargs): + """ + Returns the requested number of samples of parameter sets + """ + pass + + def minimize(self, n_iter): + results = [] + for i in tqdm(range(n_iter)): + r = self.one_trial(choice_best=i + 1 == n_iter) + results.append(r) + return results[-1] diff --git a/brainpy/_src/optimizers/skopt_bayesian.py b/brainpy/_src/optimizers/skopt_bayesian.py new file mode 100644 index 00000000..a6f32f0c --- /dev/null +++ b/brainpy/_src/optimizers/skopt_bayesian.py @@ -0,0 +1,98 @@ +from typing import Callable, Optional, Sequence + +import numpy as np + +from .base import Optimizer + +__all__ = ['SkBayesianOptimizer'] + + +class SkBayesianOptimizer(Optimizer): + """ + SkoptOptimizer instance creates all the tools necessary for the user + to use it with scikit-optimize library. + + Parameters + ---------- + parameter_names: list[str] + Parameters to be used as instruments. + bounds : list + List with appropiate bounds for each parameter. + method : `str`, optional + The optimization method. Possibilities: "GP", "RF", "ET", "GBRT" or + sklearn regressor, default="GP" + n_calls: int + Number of calls to ``func``. Defaults to 100. + n_jobs: int + The number of jobs to run in parallel for ``fit``. If -1, then the + number of jobs is set to the number of cores. + + """ + + def __init__( + self, + loss_fun: Callable, + n_sample: int, + bounds: Optional[Sequence] = None, + method: str = 'GP', + **kwds + ): + super().__init__() + + try: + from sklearn.base import RegressorMixin # noqa + except (ImportError, ModuleNotFoundError): + raise ImportError("scikit-learn must be installed to use this class") + + # loss function + assert callable(loss_fun), "'loss_fun' must be a callable function" + self.loss_fun = loss_fun + + # method + if not (method.upper() in ["GP", "RF", "ET", "GBRT"] or isinstance(method, RegressorMixin)): + raise AssertionError(f"Provided method: {method} is not an skopt optimization or a regressor") + self.method = method + + # population size + assert n_sample > 0, "'n_sample' must be a positive integer" + self.n_sample = n_sample + + # bounds + if bounds is None: + bounds = () + self.bounds = bounds + + # others + self.kwds = kwds + + def initialize(self): + try: + from skopt.optimizer import Optimizer # noqa + from skopt.space import Real # noqa + except (ImportError, ModuleNotFoundError): + raise ImportError("scikit-optimize must be installed to use this class") + self.tested_parameters = [] + self.errors = [] + instruments = [] + for bound in self.bounds: + instrumentation = Real(*np.asarray(bound), transform='normalize') + instruments.append(instrumentation) + self.optim = Optimizer(dimensions=instruments, base_estimator=self.method, **self.kwds) + + def one_trial(self, choice_best: bool = False): + # draw parameters + parameters = self.optim.ask(n_points=self.n_sample) + self.tested_parameters.extend(parameters) + + # errors + errors = self.loss_fun(*np.asarray(parameters).T) + errors = np.asarray(errors).tolist() + self.errors.extend(errors) + + # tell + self.optim.tell(parameters, errors) + + if choice_best: + xi = self.optim.Xi + yii = np.array(self.optim.yi) + return xi[yii.argmin()]