-
Notifications
You must be signed in to change notification settings - Fork 16
/
__init__.py
382 lines (321 loc) · 13.2 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
from dataclasses import dataclass
import torch
import torch.nn as nn
from comfy.model_patcher import ModelPatcher
import comfy.ops
from typing import Union
import comfy.sample
import latent_preview
import comfy.utils
T = torch.Tensor
def exists(val):
return val is not None
def default(val, d):
if exists(val):
return val
return d
class StyleAlignedArgs:
def __init__(self, share_attn: str) -> None:
self.adain_keys = "k" in share_attn
self.adain_values = "v" in share_attn
self.adain_queries = "q" in share_attn
share_attention: bool = True
adain_queries: bool = True
adain_keys: bool = True
adain_values: bool = True
def expand_first(
feat: T,
scale=1.0,
) -> T:
"""
Expand the first element so it has the same shape as the rest of the batch.
"""
b = feat.shape[0]
feat_style = torch.stack((feat[0], feat[b // 2])).unsqueeze(1)
if scale == 1:
feat_style = feat_style.expand(2, b // 2, *feat.shape[1:])
else:
feat_style = feat_style.repeat(1, b // 2, 1, 1, 1)
feat_style = torch.cat([feat_style[:, :1], scale * feat_style[:, 1:]], dim=1)
return feat_style.reshape(*feat.shape)
def concat_first(feat: T, dim=2, scale=1.0) -> T:
"""
concat the the feature and the style feature expanded above
"""
feat_style = expand_first(feat, scale=scale)
return torch.cat((feat, feat_style), dim=dim)
def calc_mean_std(feat, eps: float = 1e-5) -> "tuple[T, T]":
feat_std = (feat.var(dim=-2, keepdims=True) + eps).sqrt()
feat_mean = feat.mean(dim=-2, keepdims=True)
return feat_mean, feat_std
def adain(feat: T) -> T:
feat_mean, feat_std = calc_mean_std(feat)
feat_style_mean = expand_first(feat_mean)
feat_style_std = expand_first(feat_std)
feat = (feat - feat_mean) / feat_std
feat = feat * feat_style_std + feat_style_mean
return feat
class SharedAttentionProcessor:
def __init__(self, args: StyleAlignedArgs, scale: float):
self.args = args
self.scale = scale
def __call__(self, q, k, v, extra_options):
if self.args.adain_queries:
q = adain(q)
if self.args.adain_keys:
k = adain(k)
if self.args.adain_values:
v = adain(v)
if self.args.share_attention:
k = concat_first(k, -2, scale=self.scale)
v = concat_first(v, -2)
return q, k, v
def get_norm_layers(
layer: nn.Module,
norm_layers_: "dict[str, list[Union[nn.GroupNorm, nn.LayerNorm]]]",
share_layer_norm: bool,
share_group_norm: bool,
):
if isinstance(layer, nn.LayerNorm) and share_layer_norm:
norm_layers_["layer"].append(layer)
if isinstance(layer, nn.GroupNorm) and share_group_norm:
norm_layers_["group"].append(layer)
else:
for child_layer in layer.children():
get_norm_layers(
child_layer, norm_layers_, share_layer_norm, share_group_norm
)
def register_norm_forward(
norm_layer: Union[nn.GroupNorm, nn.LayerNorm],
) -> Union[nn.GroupNorm, nn.LayerNorm]:
if not hasattr(norm_layer, "orig_forward"):
setattr(norm_layer, "orig_forward", norm_layer.forward)
orig_forward = norm_layer.orig_forward
def forward_(hidden_states: T) -> T:
n = hidden_states.shape[-2]
hidden_states = concat_first(hidden_states, dim=-2)
hidden_states = orig_forward(hidden_states) # type: ignore
return hidden_states[..., :n, :]
norm_layer.forward = forward_ # type: ignore
return norm_layer
def register_shared_norm(
model: ModelPatcher,
share_group_norm: bool = True,
share_layer_norm: bool = True,
):
norm_layers = {"group": [], "layer": []}
get_norm_layers(model.model, norm_layers, share_layer_norm, share_group_norm)
print(
f"Patching {len(norm_layers['group'])} group norms, {len(norm_layers['layer'])} layer norms."
)
return [register_norm_forward(layer) for layer in norm_layers["group"]] + [
register_norm_forward(layer) for layer in norm_layers["layer"]
]
SHARE_NORM_OPTIONS = ["both", "group", "layer", "disabled"]
SHARE_ATTN_OPTIONS = ["q+k", "q+k+v", "disabled"]
class StyleAlignedSampleReferenceLatents:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model": ("MODEL",),
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"sampler": ("SAMPLER", ),
"sigmas": ("SIGMAS", ),
"latent_image": ("LATENT", ),
}
}
RETURN_TYPES = ("STEP_LATENTS","LATENT")
RETURN_NAMES = ("ref_latents", "noised_output")
FUNCTION = "sample"
CATEGORY = "style_aligned"
def sample(self, model, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image):
sigmas = sigmas.flip(0)
if sigmas[0] == 0:
sigmas[0] = 0.0001
latent = latent_image
latent_image = latent["samples"]
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
noise_mask = None
if "noise_mask" in latent:
noise_mask = latent["noise_mask"]
ref_latents = []
def callback(step: int, x0: T, x: T, steps: int):
ref_latents.insert(0, x[0])
disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
samples = comfy.sample.sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise_seed)
out = latent.copy()
out["samples"] = samples
out_noised = out
ref_latents = torch.stack(ref_latents)
return (ref_latents, out_noised)
class StyleAlignedReferenceSampler:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"model": ("MODEL",),
"share_norm": (SHARE_NORM_OPTIONS,),
"share_attn": (SHARE_ATTN_OPTIONS,),
"scale": ("FLOAT", {"default": 1, "min": 0, "max": 2.0, "step": 0.01}),
"batch_size": ("INT", {"default": 2, "min": 1, "max": 8, "step": 1}),
"noise_seed": (
"INT",
{"default": 0, "min": 0, "max": 0xFFFFFFFFFFFFFFFF},
),
"cfg": (
"FLOAT",
{
"default": 8.0,
"min": 0.0,
"max": 100.0,
"step": 0.1,
"round": 0.01,
},
),
"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
"ref_positive": ("CONDITIONING",),
"sampler": ("SAMPLER",),
"sigmas": ("SIGMAS",),
"ref_latents": ("STEP_LATENTS",),
},
}
RETURN_TYPES = ("LATENT", "LATENT")
RETURN_NAMES = ("output", "denoised_output")
FUNCTION = "patch"
CATEGORY = "style_aligned"
def patch(
self,
model: ModelPatcher,
share_norm: str,
share_attn: str,
scale: float,
batch_size: int,
noise_seed: int,
cfg: float,
positive: T,
negative: T,
ref_positive: T,
sampler: T,
sigmas: T,
ref_latents: T,
) -> "tuple[dict, dict]":
m = model.clone()
args = StyleAlignedArgs(share_attn)
# Concat batch with style latent
style_latent_tensor = ref_latents[0].unsqueeze(0)
height, width = style_latent_tensor.shape[-2:]
latent_t = torch.zeros(
[batch_size, 4, height, width], device=ref_latents.device
)
latent = {"samples": latent_t}
noise = comfy.sample.prepare_noise(latent_t, noise_seed)
latent_t = torch.cat((style_latent_tensor, latent_t), dim=0)
ref_noise = torch.zeros_like(noise[0]).unsqueeze(0)
noise = torch.cat((ref_noise, noise), dim=0)
x0_output = {}
preview_callback = latent_preview.prepare_callback(m, sigmas.shape[-1] - 1, x0_output)
# Replace first latent with the corresponding reference latent after each step
def callback(step: int, x0: T, x: T, steps: int):
preview_callback(step, x0, x, steps)
if (step + 1 < steps):
x[0] = ref_latents[step+1]
x0[0] = ref_latents[step+1]
# Register shared norms
share_group_norm = share_norm in ["group", "both"]
share_layer_norm = share_norm in ["layer", "both"]
register_shared_norm(m, share_group_norm, share_layer_norm)
# Patch cross attn
m.set_model_attn1_patch(SharedAttentionProcessor(args, scale))
# Add reference conditioning to batch
batched_condition = []
for i,condition in enumerate(positive):
additional = condition[1].copy()
batch_with_reference = torch.cat([ref_positive[i][0], condition[0].repeat([batch_size] + [1] * len(condition[0].shape[1:]))], dim=0)
if 'pooled_output' in additional and 'pooled_output' in ref_positive[i][1]:
# combine pooled output
pooled_output = torch.cat([ref_positive[i][1]['pooled_output'], additional['pooled_output'].repeat([batch_size]
+ [1] * len(additional['pooled_output'].shape[1:]))], dim=0)
additional['pooled_output'] = pooled_output
if 'control' in additional:
if 'control' in ref_positive[i][1]:
# combine control conditioning
control_hint = torch.cat([ref_positive[i][1]['control'].cond_hint_original, additional['control'].cond_hint_original.repeat([batch_size]
+ [1] * len(additional['control'].cond_hint_original.shape[1:]))], dim=0)
cloned_controlnet = additional['control'].copy()
cloned_controlnet.set_cond_hint(control_hint, strength=additional['control'].strength, timestep_percent_range=additional['control'].timestep_percent_range)
additional['control'] = cloned_controlnet
else:
# add zeros for first in batch
control_hint = torch.cat([torch.zeros_like(additional['control'].cond_hint_original), additional['control'].cond_hint_original.repeat([batch_size]
+ [1] * len(additional['control'].cond_hint_original.shape[1:]))], dim=0)
cloned_controlnet = additional['control'].copy()
cloned_controlnet.set_cond_hint(control_hint, strength=additional['control'].strength, timestep_percent_range=additional['control'].timestep_percent_range)
additional['control'] = cloned_controlnet
batched_condition.append([batch_with_reference, additional])
disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
samples = comfy.sample.sample_custom(
m,
noise,
cfg,
sampler,
sigmas,
batched_condition,
negative,
latent_t,
callback=callback,
disable_pbar=disable_pbar,
seed=noise_seed,
)
# remove reference image
samples = samples[1:]
out = latent.copy()
out["samples"] = samples
if "x0" in x0_output:
out_denoised = latent.copy()
x0 = x0_output["x0"][1:]
out_denoised["samples"] = m.model.process_latent_out(x0.cpu())
else:
out_denoised = out
return (out, out_denoised)
class StyleAlignedBatchAlign:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"model": ("MODEL",),
"share_norm": (SHARE_NORM_OPTIONS,),
"share_attn": (SHARE_ATTN_OPTIONS,),
"scale": ("FLOAT", {"default": 1, "min": 0, "max": 1.0, "step": 0.1}),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "style_aligned"
def patch(
self,
model: ModelPatcher,
share_norm: str,
share_attn: str,
scale: float,
):
m = model.clone()
share_group_norm = share_norm in ["group", "both"]
share_layer_norm = share_norm in ["layer", "both"]
register_shared_norm(model, share_group_norm, share_layer_norm)
args = StyleAlignedArgs(share_attn)
m.set_model_attn1_patch(SharedAttentionProcessor(args, scale))
return (m,)
NODE_CLASS_MAPPINGS = {
"StyleAlignedReferenceSampler": StyleAlignedReferenceSampler,
"StyleAlignedSampleReferenceLatents": StyleAlignedSampleReferenceLatents,
"StyleAlignedBatchAlign": StyleAlignedBatchAlign,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"StyleAlignedReferenceSampler": "StyleAligned Reference Sampler",
"StyleAlignedSampleReferenceLatents": "StyleAligned Sample Reference Latents",
"StyleAlignedBatchAlign": "StyleAligned Batch Align",
}