forked from acroucher/PyTOUGH
-
Notifications
You must be signed in to change notification settings - Fork 0
/
t2thermo.py
331 lines (314 loc) · 12.6 KB
/
t2thermo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
"""IFC-67 thermodynamic formulation, as used in AUTOUGH2. There are the 'fast' versions of the thermodynamic routines
originally developed by Mike O'Sullivan."""
"""
Copyright 2011 University of Auckland.
This file is part of PyTOUGH.
PyTOUGH is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
PyTOUGH is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with PyTOUGH. If not, see <http://www.gnu.org/licenses/>."""
# data arrays:
cowat_a=[0.,6.824687741e3,-5.422063673e2,-2.096666205e4,3.941286787e4,
-13.466555478e4,29.707143084e4,-4.375647096e5,42.954208335e4,
-27.067012452e4,9.926972482e4,-16.138168904e3,7.982692717e0,
-2.616571843e-2,1.522411790e-3,2.284279054e-2,2.421647003e2,
1.269716088e-10,2.074838328e-7,2.174020350e-8,1.105710498e-9,
1.293441934e1,1.308119072e-5,6.047626338e-14]
cowat_sa=[0.,8.438375405e-1,5.362162162e-4,1.720000000e0,7.342278489e-2,
4.975858870e-2,6.537154300e-1,1.150e-6,1.51080e-5,
1.41880e-1,7.002753165e0,2.995284926e-4,2.040e-1]
supst_b_index=[0,1,2,3,4,5,11,12,21,22,23,31,32,41,42,51,52,53,61,62,71,72,81,82,90,91,92,93,94,95,96]
supst_b_data=[16.83599274,28.56067796,-54.38923329,0.4330662834,-0.6547711697,8.565182058e-2,
6.670375918e-2,1.388983801,8.390104328e-2,2.614670893e-2,
-3.373439453e-2,4.520918904e-1,1.069036614e-1,-5.975336707e-1,
-8.847535804e-2,5.958051609e-1,-5.159303373e-1,2.075021122e-1,1.190610271e-1,
-9.867174132e-2,1.683998803e-1,-5.809438001e-2,6.552390126e-3,
5.710218649e-4,1.936587558e2,-1.388522425e3,4.126607219e3,-6.508211677e3,
5.745984054e3,-2.693088365e3,5.235718623e2]
supst_b=dict(zip(supst_b_index,supst_b_data))
supst_sb={0:7.633333333e-1, 61:4.006073948e-1, 71:8.636081627e-2, 81:-8.532322921e-1, 82:3.460208861e-1}
Pc1 = 22120000.
Tc1 = 647.3
L0, L1, L2 = 1.574373327e1, -3.417061978e1, 1.931380707e1
tc_k = 273.15
Tc1_C = Tc1 - tc_k
from math import sqrt,exp
def cowat(t, p, bounds = False):
"""Density d and internal energy u of liquid water as a function of
temperature t (deg C) and pressure p (Pa).
If bounds is True, return None values if pressure and/or temperature
are outside the operating bounds of the routine."""
if bounds:
if (0.01 <= t <= 350.) and (p <= 1.e8): ok = (p >= sat(t))
else: ok = False
else: ok = True
if ok:
TKR=(t+273.15)/647.3
TKR2=TKR*TKR
TKR3=TKR*TKR2
TKR4=TKR2*TKR2
TKR5=TKR2*TKR3
TKR6=TKR4*TKR2
TKR7=TKR4*TKR3
TKR8=TKR4*TKR4
TKR10=TKR4*TKR6
TKR11=TKR*TKR10
TKR19=TKR8*TKR11
TKR18=TKR8*TKR10
TKR20=TKR10*TKR10
PNMR=p/2.212e7
PNMR2=PNMR*PNMR
PNMR3=PNMR*PNMR2
PNMR4=PNMR*PNMR3
Y=1.0-cowat_sa[1]*TKR2-cowat_sa[2]/TKR6
ZP=cowat_sa[3]*Y*Y-2.0*cowat_sa[4]*TKR+2.0*cowat_sa[5]*PNMR
if ZP>=0.0:
Z=Y+sqrt(ZP)
CZ=Z**(5./17.)
PAR1=cowat_a[12]*cowat_sa[5]/CZ
CC1=cowat_sa[6]-TKR
CC2=CC1*CC1
CC4=CC2*CC2
CC8=CC4*CC4
CC10=CC2*CC8
AA1=cowat_sa[7]+TKR19
PAR2=cowat_a[13]+cowat_a[14]*TKR+cowat_a[15]*TKR2+cowat_a[16]*CC10+cowat_a[17]/AA1
PAR3=(cowat_a[18]+2.*cowat_a[19]*PNMR+3.*cowat_a[20]*PNMR2)/(cowat_sa[8]+TKR11)
DD1=cowat_sa[10]+PNMR
DD2=DD1*DD1
DD4=DD2*DD2
PAR4=cowat_a[21]*TKR18*(cowat_sa[9]+TKR2)*(-3.0/DD4+cowat_sa[11])
PAR5=3.0*cowat_a[22]*(cowat_sa[12]-TKR)*PNMR2+4.0*cowat_a[23]/TKR20*PNMR3
VMKR=PAR1+PAR2-PAR3-PAR4+PAR5
V=VMKR*3.17e-3
D=1.0/V
YD=-2.0*cowat_sa[1]*TKR+6.0*cowat_sa[2]/TKR7
SNUM=cowat_a[10]+cowat_a[11]*TKR
SNUM=SNUM*TKR + cowat_a[9]
SNUM=SNUM*TKR + cowat_a[8]
SNUM=SNUM*TKR + cowat_a[7]
SNUM=SNUM*TKR + cowat_a[6]
SNUM=SNUM*TKR + cowat_a[5]
SNUM=SNUM*TKR + cowat_a[4]
SNUM=SNUM*TKR2 - cowat_a[2]
PRT1=cowat_a[12]*(Z*(17.0*(Z/29.0-Y/12.0)+5.0*TKR*YD/12.0)+cowat_sa[4]*TKR-(cowat_sa[3]-1.0)*TKR*Y*YD)/CZ
PRT2=PNMR*(cowat_a[13]-cowat_a[15]*TKR2+cowat_a[16]*(9.0*TKR+cowat_sa[6])*CC8*CC1+cowat_a[17]*(19.0*TKR19+AA1)/(AA1*AA1))
BB1=cowat_sa[8]+TKR11
BB2=BB1*BB1
PRT3=(11.0*TKR11+BB1)/BB2*(cowat_a[18]*PNMR+cowat_a[19]*PNMR2+cowat_a[20]*PNMR3)
EE1=cowat_sa[10]+PNMR
EE3=EE1*EE1*EE1
PRT4=cowat_a[21]*TKR18*(17.0*cowat_sa[9]+19.0*TKR2)*(1.0/EE3+cowat_sa[11]*PNMR)
PRT5=cowat_a[22]*cowat_sa[12]*PNMR3+21.0*cowat_a[23]/TKR20*PNMR4
ENTR=cowat_a[1]*TKR-SNUM+PRT1+PRT2-PRT3+PRT4+PRT5
H=ENTR*70120.4
U=H-p*V
return D,U
else: return None,None
else: return None,None
def supst(t, p, bounds = False):
"""Density d and internal energy u of dry steam as a function of
temperature t (deg C) and pressure p (Pa).
If bounds is True, return None values if pressure and/or temperature
are outside the operating bounds of the routine."""
if bounds:
if (0.01 <= t <= 800.) and (0 <= p):
if t <= Tc1_C: ok = (p <= sat(t))
elif t <= 590.: ok = (p <= b23p(t))
else: ok = (p <= 1.e8)
else: ok = False
else: ok = True
if ok:
THETA=(t+273.15)/647.3
BETA=p/2.212e7
RI1=4.260321148
X=exp(supst_sb[0]*(1.0-THETA))
X2=X*X
X3=X2*X
X4=X3*X
X5=X4*X
X6=X5*X
X8=X6*X2
X10=X6*X4
X11=X10*X
X14=X10*X4
X18=X14*X4
X19=X18*X
X24=X18*X6
X27=X24*X3
THETA2=THETA*THETA
THETA3=THETA2*THETA
THETA4=THETA3*THETA
BETA2=BETA*BETA
BETA3=BETA2*BETA
BETA4=BETA3*BETA
BETA5=BETA4*BETA
BETA6=BETA5*BETA
BETA7=BETA6*BETA
BETAL=15.74373327-34.17061978*THETA+19.31380707*THETA2
DBETAL=-34.17061978+38.62761414*THETA
R=BETA/BETAL
R2=R*R
R4=R2*R2
R6=R4*R2
R10=R6*R4
CHI2=RI1*THETA/BETA
SC=(supst_b[11]*X10+supst_b[12])*X3
CHI2=CHI2-SC
SC=supst_b[21]*X18+supst_b[22]*X2+supst_b[23]*X
CHI2=CHI2-2*BETA*SC
SC=(supst_b[31]*X8+supst_b[32])*X10
CHI2=CHI2-3*BETA2*SC
SC=(supst_b[41]*X11+supst_b[42])*X14
CHI2=CHI2-4*BETA3*SC
SC=(supst_b[51]*X8+supst_b[52]*X4+supst_b[53])*X24
CHI2=CHI2-5*BETA4*SC
SD1=1.0/BETA4+supst_sb[61]*X14
SD2=1.0/BETA5+supst_sb[71]*X19
SD3=1.0/BETA6+(supst_sb[81]*X27+supst_sb[82])*X27
SD12=SD1*SD1
SD22=SD2*SD2
SD32=SD3*SD3
SN=(supst_b[61]*X+supst_b[62])*X11
CHI2=CHI2-SN/SD12*4/BETA5
SN=(supst_b[71]*X6+supst_b[72])*X18
CHI2=CHI2-SN/SD22*5/BETA6
SN=(supst_b[81]*X10+supst_b[82])*X14
CHI2=CHI2-SN/SD32*6/BETA7
SC=supst_b[96]
SC=SC*X+supst_b[95]
SC=SC*X+supst_b[94]
SC=SC*X+supst_b[93]
SC=SC*X+supst_b[92]
SC=SC*X+supst_b[91]
SC=SC*X+supst_b[90]
CHI2=CHI2+11.0*R10*SC
V=CHI2*0.00317
D=1.0/V
OS1=supst_sb[0]*THETA
EPS2=supst_b[0]*THETA-(-supst_b[1]+supst_b[3]*THETA2+2.0*supst_b[4]*THETA3+3.0*supst_b[5]*THETA4)
SC=(supst_b[11]*(1.0+13.0*OS1)*X10+supst_b[12]*(1.0+3.0*OS1))*X3
EPS2=EPS2-BETA*SC
SC=supst_b[21]*(1.0+18.0*OS1)*X18+supst_b[22]*(1.0+2.0*OS1)*X2+supst_b[23]*(1.0+OS1)*X
EPS2=EPS2-BETA2*SC
SC=(supst_b[31]*(1.0+18.0*OS1)*X8+supst_b[32]*(1.0+10.0*OS1))*X10
EPS2=EPS2-BETA3*SC
SC=(supst_b[41]*(1.0+25.0*OS1)*X11+supst_b[42]*(1.0+14.0*OS1))*X14
EPS2=EPS2-BETA4*SC
SC=(supst_b[51]*(1.0+32.0*OS1)*X8+supst_b[52]*(1.0+28.0*OS1)*X4+supst_b[53]*(1.0+24.0*OS1))*X24
EPS2=EPS2-BETA5*SC
SN6=14.0*supst_sb[61]*X14
SN7=19.0*supst_sb[71]*X19
SN8=(54.0*supst_sb[81]*X27+27.0*supst_sb[82])*X27
OS5=1.0+11.0*OS1-OS1*SN6/SD1
SC=(supst_b[61]*X*(OS1+OS5)+supst_b[62]*OS5)*(X11/SD1)
EPS2=EPS2-SC
OS6=1.0+24.0*OS1-OS1*SN7/SD2
SC=(supst_b[71]*X6*OS6+supst_b[72]*(OS6-6.0*OS1))*(X18/SD2)
EPS2=EPS2-SC
OS7=1.0+24.0*OS1-OS1*SN8/SD3
SC=(supst_b[81]*X10*OS7+supst_b[82]*(OS7-10.0* OS1))*(X14/SD3)
EPS2=EPS2-SC
OS2=1.0+THETA*10.0*DBETAL/BETAL
SC=(OS2+6.0*OS1)*supst_b[96]
SC=SC*X+(OS2+5.0*OS1)*supst_b[95]
SC=SC*X+(OS2+4.0*OS1)*supst_b[94]
SC=SC*X+(OS2+3.0*OS1)*supst_b[93]
SC=SC*X+(OS2+2.0*OS1)*supst_b[92]
SC=SC*X+(OS2+OS1)*supst_b[91]
SC=SC*X+OS2*supst_b[90]
EPS2=EPS2+BETA*R10*SC
H=EPS2*70120.4
U=H-p*V
return D,U
else: return None,None
def sat(t, bounds = False):
"""Saturation pressure (Pa) as a function of temperature (deg C).
If bounds is True, returns None if the temperature is out of
range."""
a=[0.,-7.691234564,-2.608023696e1,-1.681706546e2,6.423285504e1,
-1.189646225e2,4.167117320,2.097506760e1,1.0e9,6.0]
if bounds:
ok = (0.01 <= t <= Tc1_C)
else: ok = True
if ok:
if (0.01 <= t <= 500.0): # arbitrary upper limit in TOUGH2 implementation
TC=(t+273.15)/647.3
X1=1.0-TC
X2=X1*X1
SC=a[5]*X1+a[4]
SC=SC*X1+a[3]
SC=SC*X1+a[2]
SC=SC*X1+a[1]
SC=SC*X1
PC=exp(SC/(TC*(1.0+a[6]*X1+a[7]*X2))-X1/(a[8]*X2+a[9]))
return PC*2.212e7
else: return None
else: return None
def tsat(p, bounds = False):
"""Saturation temperature (deg C) as a function of pressure (Pa).
If bounds is True, return None if the pressure is out of range."""
if bounds:
ok = (sat(0.01) <= p <= Pc1)
else: ok = True
if ok:
from scipy.optimize import fsolve
def f(t): return sat(t)-p
from math import log
t0=max(4606.0/(24.02-log(p))-273.15,5.0) # starting estimate
t=fsolve(f,t0)
import collections # need to check this as some versions of SciPy return an array from fsolve
if isinstance(t,collections.Iterable): return t[0]
else: return t
else: return None
def visw(t,p,ps):
"""Viscosity of liquid water as a function of temperature (deg C) and pressure and saturation pressure (Pa)."""
EX=247.8/(t+133.15)
PHI=1.0467*(t-31.85)
AM=1.0+PHI*(p-ps)*1.0e-11
return 1.0e-7*AM*241.4*10.0**EX
def viss(t,d):
"""Viscosity of vapour as a function of temperature (deg C) and density (kg/m3)."""
V1=0.407*t+80.4
if t<=350.0: return 1.0e-7*(V1-d*(1858.0-5.9*t)*1.0e-3)
else: return 1.0e-7*(V1+d*(0.353+d*(676.5e-6+d*102.1e-9)))
def separated_steam_fraction(h, separator_pressure, separator_pressure2 = None):
"""Return separated steam fraction from given enthalpy h and separator pressure. Specify
a second separator pressure for two-stage flash."""
def enth(t,p,f):
d,u = f(t,p)
return u + p/d
def hlhs(p):
ts = tsat(p)
return enth(ts,p,cowat), enth(ts,p,supst)
if separator_pressure2 is None:
# if single stage
hl1,hs1 = hlhs(separator_pressure)
hl = 1.0/(hs1-hl1)
hs = -hl1/(hs1-hl1)
else:
# if two stages
hl1,hs1 = hlhs(separator_pressure)
hl2,hs2 = hlhs(separator_pressure2)
hl = (hs2-hl1)/((hs1-hl1)*(hs2-hl2))
hs = (hs1*(hl1-hl2)-hl1*(hs2-hl2))/((hs1-hl1)*(hs2-hl2))
# steam fraction is hl*h+hs
frac = hl*h+hs
return max(min(frac,1.0),0.0)
def b23p(t):
"""Returns the pressure on the boundary between regions 2 and 3,
given a temperature t (deg C)."""
theta = (t + tc_k) / Tc1
return Pc1 * (L0 + theta * (L1 + L2 * theta))
def region(t, p):
"""Returns thermodynamic region corresponding to the given temperature and pressure,
or None if out of bounds."""
if (0.01 <= t <= 800.) and (0. <= p <= 100.e6):
if t <= 350.:
return 2 if p < sat(t) else 1
elif t <= Tc1_C:
if p <= b23p(t): return 2
else: return 3 if p < sat(t) else 4
elif t <= 590.:
return 2 if p < b23p(t) else 3
else: return 2
else: return None