diff --git a/models/brody/deploy.prototxt b/models/brody/deploy.prototxt deleted file mode 100644 index 85e72f10774..00000000000 --- a/models/brody/deploy.prototxt +++ /dev/null @@ -1,339 +0,0 @@ -name: "BrodyNet" -input: "data" -input_dim: 10 -input_dim: 3 -input_dim: 480 -input_dim: 640 - -layers { - name: "conv1" - type: CONVOLUTION - bottom: "data" - top: "conv1" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 96 - kernel_size: 11 - stride: 4 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu1" - type: RELU - bottom: "conv1" - top: "conv1" -} -layers { - name: "pool1" - type: POOLING - bottom: "conv1" - top: "pool1" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "norm1" - type: LRN - bottom: "pool1" - top: "norm1" - lrn_param { - local_size: 5 - alpha: 0.0001 - beta: 0.75 - } -} -layers { - name: "conv2" - type: CONVOLUTION - bottom: "norm1" - top: "conv2" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 256 - pad: 2 - kernel_size: 5 - group: 2 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu2" - type: RELU - bottom: "conv2" - top: "conv2" -} -layers { - name: "pool2" - type: POOLING - bottom: "conv2" - top: "pool2" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "norm2" - type: LRN - bottom: "pool2" - top: "norm2" - lrn_param { - local_size: 5 - alpha: 0.0001 - beta: 0.75 - } -} -layers { - name: "conv3" - type: CONVOLUTION - bottom: "norm2" - top: "conv3" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 384 - pad: 1 - kernel_size: 3 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu3" - type: RELU - bottom: "conv3" - top: "conv3" -} -layers { - name: "conv4" - type: CONVOLUTION - bottom: "conv3" - top: "conv4" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 384 - pad: 1 - kernel_size: 3 - group: 2 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu4" - type: RELU - bottom: "conv4" - top: "conv4" -} -layers { - name: "conv5" - type: CONVOLUTION - bottom: "conv4" - top: "conv5" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 256 - pad: 1 - kernel_size: 3 - group: 2 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu5" - type: RELU - bottom: "conv5" - top: "conv5" -} -layers { - name: "pool5" - type: POOLING - bottom: "conv5" - top: "pool5" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "fc6-conv" - type: CONVOLUTION - bottom: "pool5" - top: "fc6-conv" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 4096 - kernel_size: 6 - pad: 3 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu6" - type: RELU - bottom: "fc6-conv" - top: "fc6-conv" -} -layers { - name: "drop6" - type: DROPOUT - bottom: "fc6-conv" - top: "fc6-conv" - dropout_param { - dropout_ratio: 0.0 - } -} -layers { - name: "fc7-conv" - type: CONVOLUTION - bottom: "fc6-conv" - top: "fc7-conv" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 4096 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu7" - type: RELU - bottom: "fc7-conv" - top: "fc7-conv" -} -layers { - name: "drop7" - type: DROPOUT - bottom: "fc7-conv" - top: "fc7-conv" - dropout_param { - dropout_ratio: 0.0 - } -} - -layers { - name: "bb-output" - type: CONVOLUTION - bottom: "fc7-conv" - top: "bb-output" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 64 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1.0 - } - } -} - -layers { - name: "pixel-conv" - type: CONVOLUTION - bottom: "fc7-conv" - top: "pixel-conv" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 16 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.005 - } - bias_filler { - type: "constant" - value: 1.0 - } - } -} - -# Pixel level logistic prediction. -layers { - name: "pixel-prob" - type: SIGMOID - bottom: "pixel-conv" - top: "pixel-prob" -} diff --git a/models/brody/deploy_deeppy.prototxt b/models/brody/deploy_deeppy.prototxt deleted file mode 100644 index c3425109a37..00000000000 --- a/models/brody/deploy_deeppy.prototxt +++ /dev/null @@ -1,359 +0,0 @@ -name: "BrodyNet" -input: "data" -input_dim: 10 -input_dim: 3 -input_dim: 480 -input_dim: 640 - -layers { - name: "L0" - type: CONVOLUTION - bottom: "data" - top: "L0" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 96 - kernel_size: 11 - stride: 4 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu1" - type: RELU - bottom: "L0" - top: "L0" -} -layers { - name: "norm1" - type: LRN_FIXED - bottom: "L0" - top: "norm1" - lrn_param { - local_size: 5 - alpha: 0.0001 - beta: 0.75 - } -} -layers { - name: "pool1" - type: POOLING - bottom: "norm1" - top: "pool1" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "L1" - type: CONVOLUTION - bottom: "pool1" - top: "L1" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 256 - pad: 2 - kernel_size: 5 - group: 1 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu2" - type: RELU - bottom: "L1" - top: "L1" -} -layers { - name: "norm2" - type: LRN_FIXED - bottom: "L1" - top: "norm2" - lrn_param { - local_size: 5 - alpha: 0.0001 - beta: 0.75 - } -} -layers { - name: "pool2" - type: POOLING - bottom: "norm2" - top: "pool2" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "L2" - type: CONVOLUTION - bottom: "pool2" - top: "L2" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 384 - pad: 1 - kernel_size: 3 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu3" - type: RELU - bottom: "L2" - top: "L2" -} -layers { - name: "L3" - type: CONVOLUTION - bottom: "L2" - top: "L3" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 384 - pad: 1 - kernel_size: 3 - group: 1 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu4" - type: RELU - bottom: "L3" - top: "L3" -} -layers { - name: "L4" - type: CONVOLUTION - bottom: "L3" - top: "L4" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 384 - pad: 1 - kernel_size: 3 - group: 1 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu5" - type: RELU - bottom: "L4" - top: "L4" -} -layers { - name: "pool5" - type: POOLING - bottom: "L4" - top: "pool5" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "L5" - type: CONVOLUTION - bottom: "pool5" - top: "L5" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 4096 - kernel_size: 6 - pad: 3 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu6" - type: RELU - bottom: "L5" - top: "L5" -} -layers { - name: "drop6" - type: DROPOUT_FIXED - bottom: "L5" - top: "L5d" - dropout_param { - dropout_ratio: 0.5 - } -} -layers { - name: "L6" - type: CONVOLUTION - bottom: "L5d" - top: "L6" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 4096 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu7" - type: RELU - bottom: "L6" - top: "L6" -} -layers { - name: "drop7" - type: DROPOUT_FIXED - bottom: "L6" - top: "L6d" - dropout_param { - dropout_ratio: 0.5 - } -} - -layers { - name: "L7.regression" - type: CONVOLUTION - bottom: "L6d" - top: "L7.regression" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 320 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1.0 - } - } -} - -layers { - name: "L7" - type: CONVOLUTION - bottom: "L6d" - top: "L7" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 128 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.005 - } - bias_filler { - type: "constant" - value: 1.0 - } - } -} - -layers { - name: "pixel-tile" - type: TILING - bottom: "L7" - top: "pixel-conv-tiled" - tiling_param { - tile_dim: 8 - } -} - -layers { - name: "bb-tile" - type: TILING - bottom: "L7.regression" - top: "bb-output-tiled" - tiling_param { - tile_dim: 8 - } -} - -# Pixel level softmax prediction. -layers { - name: "pixel-prob" - type: SOFTMAX - bottom: "pixel-conv-tiled" - top: "pixel-prob" -} diff --git a/models/brody/deploy_softmax.prototxt b/models/brody/deploy_softmax.prototxt deleted file mode 100644 index c19d427f280..00000000000 --- a/models/brody/deploy_softmax.prototxt +++ /dev/null @@ -1,359 +0,0 @@ -name: "BrodyNet" -input: "data" -input_dim: 10 -input_dim: 3 -input_dim: 480 -input_dim: 640 - -layers { - name: "conv1" - type: CONVOLUTION - bottom: "data" - top: "conv1" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 96 - kernel_size: 11 - stride: 4 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu1" - type: RELU - bottom: "conv1" - top: "conv1" -} -layers { - name: "pool1" - type: POOLING - bottom: "conv1" - top: "pool1" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "norm1" - type: LRN - bottom: "pool1" - top: "norm1" - lrn_param { - local_size: 5 - alpha: 0.0001 - beta: 0.75 - } -} -layers { - name: "conv2" - type: CONVOLUTION - bottom: "norm1" - top: "conv2" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 256 - pad: 2 - kernel_size: 5 - group: 2 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu2" - type: RELU - bottom: "conv2" - top: "conv2" -} -layers { - name: "pool2" - type: POOLING - bottom: "conv2" - top: "pool2" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "norm2" - type: LRN - bottom: "pool2" - top: "norm2" - lrn_param { - local_size: 5 - alpha: 0.0001 - beta: 0.75 - } -} -layers { - name: "conv3" - type: CONVOLUTION - bottom: "norm2" - top: "conv3" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 384 - pad: 1 - kernel_size: 3 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu3" - type: RELU - bottom: "conv3" - top: "conv3" -} -layers { - name: "conv4" - type: CONVOLUTION - bottom: "conv3" - top: "conv4" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 384 - pad: 1 - kernel_size: 3 - group: 2 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu4" - type: RELU - bottom: "conv4" - top: "conv4" -} -layers { - name: "conv5" - type: CONVOLUTION - bottom: "conv4" - top: "conv5" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 256 - pad: 1 - kernel_size: 3 - group: 2 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu5" - type: RELU - bottom: "conv5" - top: "conv5" -} -layers { - name: "pool5" - type: POOLING - bottom: "conv5" - top: "pool5" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "fc6-conv" - type: CONVOLUTION - bottom: "pool5" - top: "fc6-conv" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 4096 - kernel_size: 6 - pad: 3 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu6" - type: RELU - bottom: "fc6-conv" - top: "fc6-conv" -} -layers { - name: "drop6" - type: DROPOUT - bottom: "fc6-conv" - top: "fc6-conv" - dropout_param { - dropout_ratio: 0.0 - } -} -layers { - name: "fc7-conv" - type: CONVOLUTION - bottom: "fc6-conv" - top: "fc7-conv" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 4096 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu7" - type: RELU - bottom: "fc7-conv" - top: "fc7-conv" -} -layers { - name: "drop7" - type: DROPOUT - bottom: "fc7-conv" - top: "fc7-conv" - dropout_param { - dropout_ratio: 0.0 - } -} - -layers { - name: "bb-output" - type: CONVOLUTION - bottom: "fc7-conv" - top: "bb-output" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 64 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1.0 - } - } -} - -layers { - name: "pixel-conv" - type: CONVOLUTION - bottom: "fc7-conv" - top: "pixel-conv" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 32 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.005 - } - bias_filler { - type: "constant" - value: 1.0 - } - } -} - -layers { - name: "pixel-tile" - type: TILING - bottom: "pixel-conv" - top: "pixel-conv-tiled" - tiling_param { - tile_dim: 4 - } -} - -layers { - name: "bb-tile" - type: TILING - bottom: "bb-output" - top: "bb-output-tiled" - tiling_param { - tile_dim: 4 - } -} - -# Pixel level softmax prediction. -layers { - name: "pixel-prob" - type: SOFTMAX - bottom: "pixel-conv-tiled" - top: "pixel-prob" -} diff --git a/models/brody/solver.prototxt b/models/brody/solver.prototxt deleted file mode 100644 index cc7b119e95e..00000000000 --- a/models/brody/solver.prototxt +++ /dev/null @@ -1,15 +0,0 @@ -net: "models/brody/train_val_brody.prototxt" -test_iter: 20 -test_interval: 5000 -test_compute_loss: true -base_lr: 0.0000001 -lr_policy: "step" -gamma: 0.1 -stepsize: 100000 -display: 20 -max_iter: 1450000 -momentum: 0.9 -weight_decay: 0.00005 -snapshot: 10000 -snapshot_prefix: "models/brody/snapshots/test_test" -solver_mode: GPU diff --git a/models/brody/solver_driving.prototxt b/models/brody/solver_driving.prototxt deleted file mode 100644 index 5472b90de0b..00000000000 --- a/models/brody/solver_driving.prototxt +++ /dev/null @@ -1,15 +0,0 @@ -net: "models/brody/train_val_driving.prototxt" -test_iter: 20 -test_interval: 5000 -test_compute_loss: true -base_lr: 0.001 -lr_policy: "step" -gamma: 0.1 -stepsize: 100000 -display: 20 -max_iter: 1450000 -momentum: 0.9 -weight_decay: 0.00005 -snapshot: 10000 -snapshot_prefix: "models/brody/caffe_driving" -solver_mode: GPU diff --git a/models/brody/solver_driving_softmax.prototxt b/models/brody/solver_driving_softmax.prototxt deleted file mode 100644 index 1036a393acd..00000000000 --- a/models/brody/solver_driving_softmax.prototxt +++ /dev/null @@ -1,15 +0,0 @@ -net: "models/brody/train_val_driving_softmax_norm.prototxt" -test_iter: 20 -test_interval: 5000 -test_compute_loss: true -base_lr: 0.002 -lr_policy: "step" -gamma: 0.1 -stepsize: 100000 -display: 20 -max_iter: 1450000 -momentum: 0.9 -weight_decay: 0.0005 -snapshot: 1000 -snapshot_prefix: "models/brody/driving_softmax_8x8_norm" -solver_mode: GPU diff --git a/models/brody/train_val_brody.prototxt b/models/brody/train_val_brody.prototxt deleted file mode 100644 index 51ba17ef565..00000000000 --- a/models/brody/train_val_brody.prototxt +++ /dev/null @@ -1,529 +0,0 @@ -name: "BrodyNet" - -# Training input. -layers { - name: "data" - type: DATA - top: "data" - data_param { - source: "driving_img_train" - backend: LMDB - batch_size: 5 - } - transform_param { - mean_file: "driving_img_mean.binaryproto" - } - include: { phase: TRAIN } -} - -# Bounding box label and pixel label. -layers { - name: "label" - type: DATA - top: "label" - data_param { - source: "driving_label_train" - backend: LMDB - batch_size: 5 - } - include: { phase: TRAIN } -} - -# Test input. -layers { - name: "data" - type: DATA - top: "data" - data_param { - source: "driving_img_test" - backend: LMDB - batch_size: 5 - } - transform_param { - mean_file: "driving_img_mean.binaryproto" - } - include: { phase: TEST } -} - -# Bounding box label and pixel label. -layers { - name: "label" - type: DATA - top: "label" - data_param { - source: "driving_label_test" - backend: LMDB - batch_size: 5 - } - include: { phase: TEST } -} - -# Split label layer into pixel and bounding box label. -layers { - name: "slice-label" - type: SLICE - bottom: "label" - top: "pixel-label" - top: "bb-label" - top: "height-label" - top: "norm-label" - slice_param { - slice_dim: 1 - slice_point: 16 - slice_point: 80 - slice_point: 96 - } -} - -# Concatenate the pixel labels 4 folds such that it can be used to mask -# all 4 dimensions of the bounding box predictions. -layers { - name: "pixel-block" - type: CONCAT - bottom: "pixel-label" - bottom: "pixel-label" - bottom: "pixel-label" - bottom: "pixel-label" - top: "pixel-block" - concat_param { - concat_dim: 1 - } -} - -layers { - name: "height-block" - type: CONCAT - bottom: "height-label" - bottom: "height-label" - bottom: "height-label" - bottom: "height-label" - top: "height-block" - concat_param { - concat_dim: 1 - } -} - -layers { - name: "conv1" - type: CONVOLUTION - bottom: "data" - top: "conv1" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 96 - kernel_size: 11 - stride: 4 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu1" - type: RELU - bottom: "conv1" - top: "conv1" -} -layers { - name: "pool1" - type: POOLING - bottom: "conv1" - top: "pool1" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "norm1" - type: LRN - bottom: "pool1" - top: "norm1" - lrn_param { - local_size: 5 - alpha: 0.0001 - beta: 0.75 - } -} -layers { - name: "conv2" - type: CONVOLUTION - bottom: "norm1" - top: "conv2" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 256 - pad: 2 - kernel_size: 5 - group: 2 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu2" - type: RELU - bottom: "conv2" - top: "conv2" -} -layers { - name: "pool2" - type: POOLING - bottom: "conv2" - top: "pool2" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "norm2" - type: LRN - bottom: "pool2" - top: "norm2" - lrn_param { - local_size: 5 - alpha: 0.0001 - beta: 0.75 - } -} -layers { - name: "conv3" - type: CONVOLUTION - bottom: "norm2" - top: "conv3" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 384 - pad: 1 - kernel_size: 3 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu3" - type: RELU - bottom: "conv3" - top: "conv3" -} -layers { - name: "conv4" - type: CONVOLUTION - bottom: "conv3" - top: "conv4" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 384 - pad: 1 - kernel_size: 3 - group: 2 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu4" - type: RELU - bottom: "conv4" - top: "conv4" -} -layers { - name: "conv5" - type: CONVOLUTION - bottom: "conv4" - top: "conv5" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 256 - pad: 1 - kernel_size: 3 - group: 2 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu5" - type: RELU - bottom: "conv5" - top: "conv5" -} -layers { - name: "pool5" - type: POOLING - bottom: "conv5" - top: "pool5" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "fc6-conv" - type: CONVOLUTION - bottom: "pool5" - top: "fc6-conv" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 4096 - kernel_size: 6 - pad: 3 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu6" - type: RELU - bottom: "fc6-conv" - top: "fc6-conv" -} -layers { - name: "drop6" - type: DROPOUT - bottom: "fc6-conv" - top: "fc6-conv" - dropout_param { - dropout_ratio: 0.0 - } -} -layers { - name: "fc7-conv" - type: CONVOLUTION - bottom: "fc6-conv" - top: "fc7-conv" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 4096 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu7" - type: RELU - bottom: "fc7-conv" - top: "fc7-conv" -} -layers { - name: "drop7" - type: DROPOUT - bottom: "fc7-conv" - top: "fc7-conv" - dropout_param { - dropout_ratio: 0.0 - } -} - -layers { - name: "bb-output" - type: CONVOLUTION - bottom: "fc7-conv" - top: "bb-output" - blobs_lr: 100 - blobs_lr: 200 - weight_decay: 0.00001 - weight_decay: 0 - convolution_param { - num_output: 64 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1.0 - } - } -} - -layers { - name: "pixel-conv" - type: CONVOLUTION - bottom: "fc7-conv" - top: "pixel-conv" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 16 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.005 - } - bias_filler { - type: "constant" - value: 1.0 - } - } -} - -# Pixel level logistic prediction. -#layers { -# name: "pixel-prob" -# type: SIGMOID -# bottom: "pixel-conv" -# top: "pixel-prob" -#} - -# Pixel level logistic loss. -layers { - name: "pixel-loss" - type: SIGMOID_CROSS_ENTROPY_LOSS - bottom: "pixel-conv" - bottom: "pixel-label" - top: "pixel-loss" -} - -# Masking the bounding boxes with input label. -layers { - name: "bb-prob-mask" - type: ELTWISE - bottom: "pixel-block" - bottom: "bb-output" - top: "bb-masked-output" - eltwise_param { - operation: PROD - } -} - -layers { - name: "bb-loss" - type: L1_LOSS - bottom: "bb-masked-output" - bottom: "bb-label" - top: "bb-loss" - loss_weight: 1 -} - -# Squared loss on the bounding boxes. -#layers { -# name: "bb-loss" -# type: EUCLIDEAN_LOSS -# bottom: "bb-masked-output" -# bottom: "bb-label" -# top: "bb-loss" -# loss_weight: 0.01 -#} - -# L1 error loss -#layers { -# name: "bb-diff" -# type: ELTWISE -# bottom: "bb-masked-output" -# bottom: "bb-label" -# eltwise_param { -# operation: SUM -# coeff: 1.0 -# coeff: -1.0 -# } -# top: "bb-diff" -#} - -#layers { -# name: "bb-loss" -# type: ABSVAL -# bottom: "bb-diff" -# top: "bb-loss" -# # 1 / (20 * 15 * 64) -# loss_weight: 0.00000000001 -#} - -#layers { -# name: "bb-loss-pow2" -# type: POWER -# bottom: "bb-diff" -# top: "bb-loss-pow2" -# # 1 / (20 * 15 * 64) -# power_param { -# power: 2 -# } -#} - -#layers { -# name: "bb-loss-height-normalize" -# type: ELTWISE -# bottom: "bb-loss-pow2" -# bottom: "height-block" -# eltwise_param { -# operation: PROD -# } -# top: "bb-loss" -# loss_weight: 0.1 -#} - -#layers { -# name: "bb-loss-silence" -# type: SILENCE -# bottom: "bb-loss" -#} diff --git a/models/brody/train_val_driving.prototxt b/models/brody/train_val_driving.prototxt deleted file mode 100644 index e1984e2d4ae..00000000000 --- a/models/brody/train_val_driving.prototxt +++ /dev/null @@ -1,505 +0,0 @@ -name: "DrivingNet" - -# Training input. -layers { - name: "data" - type: DRIVING_DATA - top: "data" - top: "label" - data_param { - source: "driving_train" - backend: LMDB - batch_size: 5 - } - transform_param { - mean_file: "driving_mean.binaryproto" - } - include: { phase: TRAIN } -} - -# Test input. -layers { - name: "data" - type: DRIVING_DATA - top: "data" - top: "label" - data_param { - source: "driving_test" - backend: LMDB - batch_size: 5 - } - transform_param { - mean_file: "driving_mean.binaryproto" - } - include: { phase: TEST } -} - -# Split label layer into pixel and bounding box label. -layers { - name: "slice-label" - type: SLICE - bottom: "label" - top: "pixel-label" - top: "bb-label" - top: "height-label" - top: "norm-label" - slice_param { - slice_dim: 1 - slice_point: 16 - slice_point: 80 - slice_point: 96 - } -} - -# Concatenate the pixel labels 4 folds such that it can be used to mask -# all 4 dimensions of the bounding box predictions. -layers { - name: "pixel-block" - type: CONCAT - bottom: "pixel-label" - bottom: "pixel-label" - bottom: "pixel-label" - bottom: "pixel-label" - top: "pixel-block" - concat_param { - concat_dim: 1 - } -} - -layers { - name: "height-block" - type: CONCAT - bottom: "height-label" - bottom: "height-label" - bottom: "height-label" - bottom: "height-label" - top: "height-block" - concat_param { - concat_dim: 1 - } -} - -layers { - name: "conv1" - type: CONVOLUTION - bottom: "data" - top: "conv1" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 96 - kernel_size: 11 - stride: 4 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu1" - type: RELU - bottom: "conv1" - top: "conv1" -} -layers { - name: "pool1" - type: POOLING - bottom: "conv1" - top: "pool1" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "norm1" - type: LRN - bottom: "pool1" - top: "norm1" - lrn_param { - local_size: 5 - alpha: 0.0001 - beta: 0.75 - } -} -layers { - name: "conv2" - type: CONVOLUTION - bottom: "norm1" - top: "conv2" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 256 - pad: 2 - kernel_size: 5 - group: 2 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu2" - type: RELU - bottom: "conv2" - top: "conv2" -} -layers { - name: "pool2" - type: POOLING - bottom: "conv2" - top: "pool2" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "norm2" - type: LRN - bottom: "pool2" - top: "norm2" - lrn_param { - local_size: 5 - alpha: 0.0001 - beta: 0.75 - } -} -layers { - name: "conv3" - type: CONVOLUTION - bottom: "norm2" - top: "conv3" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 384 - pad: 1 - kernel_size: 3 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu3" - type: RELU - bottom: "conv3" - top: "conv3" -} -layers { - name: "conv4" - type: CONVOLUTION - bottom: "conv3" - top: "conv4" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 384 - pad: 1 - kernel_size: 3 - group: 2 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu4" - type: RELU - bottom: "conv4" - top: "conv4" -} -layers { - name: "conv5" - type: CONVOLUTION - bottom: "conv4" - top: "conv5" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 256 - pad: 1 - kernel_size: 3 - group: 2 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu5" - type: RELU - bottom: "conv5" - top: "conv5" -} -layers { - name: "pool5" - type: POOLING - bottom: "conv5" - top: "pool5" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "fc6-conv" - type: CONVOLUTION - bottom: "pool5" - top: "fc6-conv" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 4096 - kernel_size: 6 - pad: 3 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu6" - type: RELU - bottom: "fc6-conv" - top: "fc6-conv" -} -layers { - name: "drop6" - type: DROPOUT - bottom: "fc6-conv" - top: "fc6-conv" - dropout_param { - dropout_ratio: 0.0 - } -} -layers { - name: "fc7-conv" - type: CONVOLUTION - bottom: "fc6-conv" - top: "fc7-conv" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 4096 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu7" - type: RELU - bottom: "fc7-conv" - top: "fc7-conv" -} -layers { - name: "drop7" - type: DROPOUT - bottom: "fc7-conv" - top: "fc7-conv" - dropout_param { - dropout_ratio: 0.0 - } -} - -layers { - name: "bb-output" - type: CONVOLUTION - bottom: "fc7-conv" - top: "bb-output" - blobs_lr: 100 - blobs_lr: 200 - weight_decay: 0.00001 - weight_decay: 0 - convolution_param { - num_output: 64 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1.0 - } - } -} - -layers { - name: "pixel-conv" - type: CONVOLUTION - bottom: "fc7-conv" - top: "pixel-conv" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 16 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.005 - } - bias_filler { - type: "constant" - value: 1.0 - } - } -} - -# Pixel level logistic prediction. -#layers { -# name: "pixel-prob" -# type: SIGMOID -# bottom: "pixel-conv" -# top: "pixel-prob" -#} - -# Pixel level logistic loss. -layers { - name: "pixel-loss" - type: SIGMOID_CROSS_ENTROPY_LOSS - bottom: "pixel-conv" - bottom: "pixel-label" - top: "pixel-loss" -} - -# Masking the bounding boxes with input label. -layers { - name: "bb-prob-mask" - type: ELTWISE - bottom: "pixel-block" - bottom: "bb-output" - top: "bb-masked-output" - eltwise_param { - operation: PROD - } -} - -layers { - name: "bb-loss" - type: L1_LOSS - bottom: "bb-masked-output" - bottom: "bb-label" - top: "bb-loss" - loss_weight: 1 -} - -# Squared loss on the bounding boxes. -#layers { -# name: "bb-loss" -# type: EUCLIDEAN_LOSS -# bottom: "bb-masked-output" -# bottom: "bb-label" -# top: "bb-loss" -# loss_weight: 0.01 -#} - -# L1 error loss -#layers { -# name: "bb-diff" -# type: ELTWISE -# bottom: "bb-masked-output" -# bottom: "bb-label" -# eltwise_param { -# operation: SUM -# coeff: 1.0 -# coeff: -1.0 -# } -# top: "bb-diff" -#} - -#layers { -# name: "bb-loss" -# type: ABSVAL -# bottom: "bb-diff" -# top: "bb-loss" -# # 1 / (20 * 15 * 64) -# loss_weight: 0.00000000001 -#} - -#layers { -# name: "bb-loss-pow2" -# type: POWER -# bottom: "bb-diff" -# top: "bb-loss-pow2" -# # 1 / (20 * 15 * 64) -# power_param { -# power: 2 -# } -#} - -#layers { -# name: "bb-loss-height-normalize" -# type: ELTWISE -# bottom: "bb-loss-pow2" -# bottom: "height-block" -# eltwise_param { -# operation: PROD -# } -# top: "bb-loss" -# loss_weight: 0.1 -#} - -#layers { -# name: "bb-loss-silence" -# type: SILENCE -# bottom: "bb-loss" -#} diff --git a/models/brody/train_val_driving_softmax.prototxt b/models/brody/train_val_driving_softmax.prototxt deleted file mode 100644 index 88938d66113..00000000000 --- a/models/brody/train_val_driving_softmax.prototxt +++ /dev/null @@ -1,534 +0,0 @@ -name: "DrivingNet" - -# Training input. -layers { - name: "data" - type: DRIVING_DATA - top: "data" - top: "label" - data_param { - source: "new_driving_train" - backend: LMDB - batch_size: 5 - } - transform_param { - mean_file: "driving_mean.binaryproto" - } - include: { phase: TRAIN } -} - -# Test input. -layers { - name: "data" - type: DRIVING_DATA - top: "data" - top: "label" - data_param { - source: "new_driving_test" - backend: LMDB - batch_size: 5 - } - transform_param { - mean_file: "driving_mean.binaryproto" - } - include: { phase: TEST } -} - -# Split label layer into pixel and bounding box label. -layers { - name: "slice-label" - type: SLICE - bottom: "label" - top: "pixel-label" - top: "bb-label" - top: "height-label" - top: "norm-label" - slice_param { - slice_dim: 1 - slice_point: 1 - slice_point: 5 - slice_point: 6 - } -} - -# Concatenate the pixel labels 4 folds such that it can be used to mask -# all 4 dimensions of the bounding box predictions. -layers { - name: "pixel-block" - type: CONCAT - bottom: "pixel-label" - bottom: "pixel-label" - bottom: "pixel-label" - bottom: "pixel-label" - top: "pixel-block" - concat_param { - concat_dim: 1 - } -} - -layers { - name: "height-block" - type: CONCAT - bottom: "height-label" - bottom: "height-label" - bottom: "height-label" - bottom: "height-label" - top: "height-block" - concat_param { - concat_dim: 1 - } -} - -layers { - name: "conv1" - type: CONVOLUTION - bottom: "data" - top: "conv1" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 96 - kernel_size: 11 - stride: 4 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu1" - type: RELU - bottom: "conv1" - top: "conv1" -} -layers { - name: "pool1" - type: POOLING - bottom: "conv1" - top: "pool1" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "norm1" - type: LRN - bottom: "pool1" - top: "norm1" - lrn_param { - local_size: 5 - alpha: 0.0001 - beta: 0.75 - } -} -layers { - name: "conv2" - type: CONVOLUTION - bottom: "norm1" - top: "conv2" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 256 - pad: 2 - kernel_size: 5 - group: 2 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu2" - type: RELU - bottom: "conv2" - top: "conv2" -} -layers { - name: "pool2" - type: POOLING - bottom: "conv2" - top: "pool2" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "norm2" - type: LRN - bottom: "pool2" - top: "norm2" - lrn_param { - local_size: 5 - alpha: 0.0001 - beta: 0.75 - } -} -layers { - name: "conv3" - type: CONVOLUTION - bottom: "norm2" - top: "conv3" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 384 - pad: 1 - kernel_size: 3 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu3" - type: RELU - bottom: "conv3" - top: "conv3" -} -layers { - name: "conv4" - type: CONVOLUTION - bottom: "conv3" - top: "conv4" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 384 - pad: 1 - kernel_size: 3 - group: 2 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu4" - type: RELU - bottom: "conv4" - top: "conv4" -} -layers { - name: "conv5" - type: CONVOLUTION - bottom: "conv4" - top: "conv5" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 256 - pad: 1 - kernel_size: 3 - group: 2 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0.1 - } - } -} -layers { - name: "relu5" - type: RELU - bottom: "conv5" - top: "conv5" -} -layers { - name: "pool5" - type: POOLING - bottom: "conv5" - top: "pool5" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "fc6-conv" - type: CONVOLUTION - bottom: "pool5" - top: "fc6-conv" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 4096 - kernel_size: 6 - pad: 3 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu6" - type: RELU - bottom: "fc6-conv" - top: "fc6-conv" -} -layers { - name: "drop6" - type: DROPOUT - bottom: "fc6-conv" - top: "fc6-conv" - dropout_param { - dropout_ratio: 0.0 - } -} -layers { - name: "fc7-conv" - type: CONVOLUTION - bottom: "fc6-conv" - top: "fc7-conv" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 4096 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu7" - type: RELU - bottom: "fc7-conv" - top: "fc7-conv" -} -layers { - name: "drop7" - type: DROPOUT - bottom: "fc7-conv" - top: "fc7-conv" - dropout_param { - dropout_ratio: 0.0 - } -} - -layers { - name: "bb-output" - type: CONVOLUTION - bottom: "fc7-conv" - top: "bb-output" - blobs_lr: 10 - blobs_lr: 20 - weight_decay: 0.1 - weight_decay: 0 - convolution_param { - num_output: 256 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1.0 - } - } -} - -layers { - name: "pixel-conv" - type: CONVOLUTION - bottom: "fc7-conv" - top: "pixel-conv" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 128 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.005 - } - bias_filler { - type: "constant" - value: 1.0 - } - } -} - -layers { - name: "pixel-tile" - type: TILING - bottom: "pixel-conv" - top: "pixel-conv-tiled" - tiling_param { - tile_dim: 8 - } -} - -layers { - name: "bb-tile" - type: TILING - bottom: "bb-output" - top: "bb-output-tiled" - tiling_param { - tile_dim: 8 - } -} - -# Pixel level logistic prediction. -#layers { -# name: "pixel-prob" -# type: SIGMOID -# bottom: "pixel-conv" -# top: "pixel-prob" -#} - -# Pixel level logistic loss. -layers { - name: "pixel-loss" - type: SOFTMAX_LOSS - bottom: "pixel-conv-tiled" - bottom: "pixel-label" - top: "pixel-loss" -} - -# Pixel level logistic loss. -#layers { -# name: "pixel-loss" -# type: SIGMOID_CROSS_ENTROPY_LOSS -# bottom: "pixel-conv-tiled" -# bottom: "pixel-label" -# top: "pixel-loss" -#} - -# Masking the bounding boxes with input label. -layers { - name: "bb-prob-mask" - type: ELTWISE - bottom: "bb-output-tiled" - bottom: "pixel-block" - top: "bb-masked-output" - eltwise_param { - operation: PROD - } -} - -layers { - name: "bb-loss" - type: L1_LOSS - bottom: "bb-masked-output" - bottom: "bb-label" - top: "bb-loss" - loss_weight: 1 -} - -# Squared loss on the bounding boxes. -#layers { -# name: "bb-loss" -# type: EUCLIDEAN_LOSS -# bottom: "bb-masked-output" -# bottom: "bb-label" -# top: "bb-loss" -# loss_weight: 0.01 -#} - -# L1 error loss -#layers { -# name: "bb-diff" -# type: ELTWISE -# bottom: "bb-masked-output" -# bottom: "bb-label" -# eltwise_param { -# operation: SUM -# coeff: 1.0 -# coeff: -1.0 -# } -# top: "bb-diff" -#} - -#layers { -# name: "bb-loss" -# type: ABSVAL -# bottom: "bb-diff" -# top: "bb-loss" -# # 1 / (20 * 15 * 64) -# loss_weight: 0.00000000001 -#} - -#layers { -# name: "bb-loss-pow2" -# type: POWER -# bottom: "bb-diff" -# top: "bb-loss-pow2" -# # 1 / (20 * 15 * 64) -# power_param { -# power: 2 -# } -#} - -#layers { -# name: "bb-loss-height-normalize" -# type: ELTWISE -# bottom: "bb-loss-pow2" -# bottom: "height-block" -# eltwise_param { -# operation: PROD -# } -# top: "bb-loss" -# loss_weight: 0.1 -#} - -#layers { -# name: "bb-loss-silence" -# type: SILENCE -# bottom: "bb-loss" -#} diff --git a/models/brody/train_val_dummy.prototxt b/models/brody/train_val_dummy.prototxt deleted file mode 100644 index 695533d1cc9..00000000000 --- a/models/brody/train_val_dummy.prototxt +++ /dev/null @@ -1,452 +0,0 @@ -name: "BrodyDummyNet" - -# Training input. -layers { - name: "data" - type: DUMMY_DATA - top: "data" - dummy_data_param { - num: 25 - channels: 3 - height: 480 - width: 640 - data_filler { - type: "uniform" - min: 0 - max: 128 - } - } - include: { phase: TRAIN } -} - -# Test input. -layers { - name: "data" - type: DUMMY_DATA - top: "data" - dummy_data_param { - num: 25 - channels: 3 - height: 480 - width: 640 - data_filler { - type: "uniform" - min: 0 - max: 128 - } - } - include: { phase: TEST } -} - -# Bounding box output. -layers { - name: "bb-label" - type: DUMMY_DATA - top: "bb-label" - dummy_data_param { - num: 25 - channels: 64 - height: 15 - width: 20 - data_filler { - type: "uniform" - min: 0 - max: 640 - } - } -} - -# Pixel label indicating the presence of cars. -layers { - name: "pixel-label" - type: DUMMY_DATA - top: "pixel-label" - dummy_data_param { - num: 25 - channels: 16 - height: 15 - width: 20 - data_filler { - type: "uniform" - min: 0 - max: 1 - } - } -} - -# Concatenate the pixel labels 4 folds such that it can be used to mask -# all 4 dimensions of the bounding box predictions. -layers { - name: "pixel-block" - type: CONCAT - bottom: "pixel-label" - bottom: "pixel-label" - bottom: "pixel-label" - bottom: "pixel-label" - top: "pixel-block" - concat_param { - concat_dim: 1 - } -} - -layers { - name: "conv1" - type: CONVOLUTION - bottom: "data" - top: "conv1" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 96 - kernel_size: 11 - stride: 4 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0 - } - } -} -layers { - name: "relu1" - type: RELU - bottom: "conv1" - top: "conv1" -} -layers { - name: "pool1" - type: POOLING - bottom: "conv1" - top: "pool1" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "norm1" - type: LRN - bottom: "pool1" - top: "norm1" - lrn_param { - local_size: 5 - alpha: 0.0001 - beta: 0.75 - } -} -layers { - name: "conv2" - type: CONVOLUTION - bottom: "norm1" - top: "conv2" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 256 - pad: 2 - kernel_size: 5 - group: 2 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu2" - type: RELU - bottom: "conv2" - top: "conv2" -} -layers { - name: "pool2" - type: POOLING - bottom: "conv2" - top: "pool2" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "norm2" - type: LRN - bottom: "pool2" - top: "norm2" - lrn_param { - local_size: 5 - alpha: 0.0001 - beta: 0.75 - } -} -layers { - name: "conv3" - type: CONVOLUTION - bottom: "norm2" - top: "conv3" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 384 - pad: 1 - kernel_size: 3 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0 - } - } -} -layers { - name: "relu3" - type: RELU - bottom: "conv3" - top: "conv3" -} -layers { - name: "conv4" - type: CONVOLUTION - bottom: "conv3" - top: "conv4" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 384 - pad: 1 - kernel_size: 3 - group: 2 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu4" - type: RELU - bottom: "conv4" - top: "conv4" -} -layers { - name: "conv5" - type: CONVOLUTION - bottom: "conv4" - top: "conv5" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 256 - pad: 2 - kernel_size: 3 - group: 2 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu5" - type: RELU - bottom: "conv5" - top: "conv5" -} -layers { - name: "pool5" - type: POOLING - bottom: "conv5" - top: "pool5" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "fc6-conv" - type: CONVOLUTION - bottom: "pool5" - top: "fc6-conv" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 4096 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.005 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu6" - type: RELU - bottom: "fc6-conv" - top: "fc6-conv" -} -layers { - name: "drop6" - type: DROPOUT - bottom: "fc6-conv" - top: "fc6-conv" - dropout_param { - dropout_ratio: 0.5 - } -} -layers { - name: "fc7-conv" - type: CONVOLUTION - bottom: "fc6-conv" - top: "fc7-conv" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 4096 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.005 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu7" - type: RELU - bottom: "fc7-conv" - top: "fc7-conv" -} -layers { - name: "drop7" - type: DROPOUT - bottom: "fc7-conv" - top: "fc7-conv" - dropout_param { - dropout_ratio: 0.5 - } -} - -layers { - name: "bb-output" - type: CONVOLUTION - bottom: "fc7-conv" - top: "bb-output" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 64 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0 - } - } -} - -layers { - name: "pixel-conv" - type: CONVOLUTION - bottom: "fc7-conv" - top: "pixel-conv" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 16 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0 - } - } -} - -# Pixel level logistic prediction. -layers { - name: "pixel-prob" - type: SIGMOID - bottom: "pixel-conv" - top: "pixel-prob" -} - -# Pixel level logistic loss. -layers { - name: "pixel-loss" - type: SIGMOID_CROSS_ENTROPY_LOSS - bottom: "pixel-prob" - bottom: "pixel-label" - top: "pixel-loss" -} - -# Masking the bounding boxes with input label. -layers { - name: "bb-prob-mask" - type: ELTWISE - bottom: "pixel-block" - bottom: "bb-output" - top: "bb-final-output" - eltwise_param { - operation: PROD - } -} - -# Squared loss on the bounding boxes. -layers { - name: "bb-loss" - type: EUCLIDEAN_LOSS - bottom: "bb-final-output" - bottom: "bb-label" - top: "bb-loss" -} diff --git a/models/brody/train_val_old_alexoverfeat.prototxt b/models/brody/train_val_old_alexoverfeat.prototxt deleted file mode 100644 index b6b5c33eca8..00000000000 --- a/models/brody/train_val_old_alexoverfeat.prototxt +++ /dev/null @@ -1,345 +0,0 @@ -name: "CaffeNet" -layers { - name: "data" - type: DATA - top: "data" - top: "label" - data_param { - source: "random_train_lmdb" - backend: LMDB - batch_size: 5 - } - transform_param { - mean_file: "random_image_mean.binaryproto" - } - include: { phase: TRAIN } -} -layers { - name: "data" - type: DATA - top: "data" - top: "label" - data_param { - source: "random_val_lmdb" - backend: LMDB - batch_size: 5 - } - transform_param { - mean_file: "random_image_mean.binaryproto" - } - include: { phase: TEST } -} -layers { - name: "conv1" - type: CONVOLUTION - bottom: "data" - top: "conv1" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 96 - kernel_size: 11 - stride: 4 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0 - } - } -} -layers { - name: "relu1" - type: RELU - bottom: "conv1" - top: "conv1" -} -layers { - name: "pool1" - type: POOLING - bottom: "conv1" - top: "pool1" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "norm1" - type: LRN - bottom: "pool1" - top: "norm1" - lrn_param { - local_size: 5 - alpha: 0.0001 - beta: 0.75 - } -} -layers { - name: "conv2" - type: CONVOLUTION - bottom: "norm1" - top: "conv2" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 256 - pad: 2 - kernel_size: 5 - group: 2 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu2" - type: RELU - bottom: "conv2" - top: "conv2" -} -layers { - name: "pool2" - type: POOLING - bottom: "conv2" - top: "pool2" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "norm2" - type: LRN - bottom: "pool2" - top: "norm2" - lrn_param { - local_size: 5 - alpha: 0.0001 - beta: 0.75 - } -} -layers { - name: "conv3" - type: CONVOLUTION - bottom: "norm2" - top: "conv3" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 384 - pad: 1 - kernel_size: 3 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0 - } - } -} -layers { - name: "relu3" - type: RELU - bottom: "conv3" - top: "conv3" -} -layers { - name: "conv4" - type: CONVOLUTION - bottom: "conv3" - top: "conv4" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 384 - pad: 1 - kernel_size: 3 - group: 2 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu4" - type: RELU - bottom: "conv4" - top: "conv4" -} -layers { - name: "conv5" - type: CONVOLUTION - bottom: "conv4" - top: "conv5" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 256 - pad: 1 - kernel_size: 3 - group: 2 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu5" - type: RELU - bottom: "conv5" - top: "conv5" -} -layers { - name: "pool5" - type: POOLING - bottom: "conv5" - top: "pool5" - pooling_param { - pool: MAX - kernel_size: 3 - stride: 2 - } -} -layers { - name: "fc6-conv" - type: CONVOLUTION - bottom: "pool5" - top: "fc6-conv" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 4096 - kernel_size: 6 - weight_filler { - type: "gaussian" - std: 0.005 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu6" - type: RELU - bottom: "fc6-conv" - top: "fc6-conv" -} -layers { - name: "drop6" - type: DROPOUT - bottom: "fc6-conv" - top: "fc6-conv" - dropout_param { - dropout_ratio: 0.5 - } -} -layers { - name: "fc7-conv" - type: CONVOLUTION - bottom: "fc6-conv" - top: "fc7-conv" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 4096 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.005 - } - bias_filler { - type: "constant" - value: 1 - } - } -} -layers { - name: "relu7" - type: RELU - bottom: "fc7-conv" - top: "fc7-conv" -} -layers { - name: "drop7" - type: DROPOUT - bottom: "fc7-conv" - top: "fc7-conv" - dropout_param { - dropout_ratio: 0.5 - } -} -layers { - name: "fc8-conv" - type: CONVOLUTION - bottom: "fc7-conv" - top: "fc8-conv" - blobs_lr: 1 - blobs_lr: 2 - weight_decay: 1 - weight_decay: 0 - convolution_param { - num_output: 1000 - kernel_size: 1 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0 - } - } -} -layers { - name: "accuracy" - type: ACCURACY - bottom: "fc8-conv" - bottom: "label" - top: "accuracy" - include: { phase: TEST } -} -layers { - name: "loss" - type: SOFTMAX_LOSS - bottom: "fc8-conv" - bottom: "label" - top: "loss" -} diff --git a/models/brody/readme.md b/models/drive_net/readme.md similarity index 100% rename from models/brody/readme.md rename to models/drive_net/readme.md diff --git a/models/brody/solver_normalization.prototxt b/models/drive_net/solver.prototxt similarity index 100% rename from models/brody/solver_normalization.prototxt rename to models/drive_net/solver.prototxt diff --git a/models/brody/train_val_driving_normalization.prototxt b/models/drive_net/train_val.prototxt similarity index 100% rename from models/brody/train_val_driving_normalization.prototxt rename to models/drive_net/train_val.prototxt