From 84fd8202fbe0f2f7fb1cb341b30a020118cbd593 Mon Sep 17 00:00:00 2001 From: brodyh Date: Sat, 31 Jan 2015 15:27:37 -0800 Subject: [PATCH] Removed lane data loaders to remove python dependencies --- src/caffe/layer_factory.cpp | 4 - src/caffe/layers/multilane_label_layer.cpp | 213 --------------- src/caffe/layers/video_data_layer.cpp | 289 --------------------- 3 files changed, 506 deletions(-) delete mode 100644 src/caffe/layers/multilane_label_layer.cpp delete mode 100644 src/caffe/layers/video_data_layer.cpp diff --git a/src/caffe/layer_factory.cpp b/src/caffe/layer_factory.cpp index b5de038fbf5..d1bc4e35af6 100644 --- a/src/caffe/layer_factory.cpp +++ b/src/caffe/layer_factory.cpp @@ -226,8 +226,6 @@ Layer* GetLayer(const LayerParameter& param) { return new LRNFixedLayer(param); case LayerParameter_LayerType_MEMORY_DATA: return new MemoryDataLayer(param); - case LayerParameter_LayerType_MULTILANE_LABEL: - return new MultilaneLabelLayer(param); case LayerParameter_LayerType_MVN: return new MVNLayer(param); case LayerParameter_LayerType_MULTINOMIAL_LOGISTIC_LOSS: @@ -254,8 +252,6 @@ Layer* GetLayer(const LayerParameter& param) { return new SplitLayer(param); case LayerParameter_LayerType_TANH: return GetTanHLayer(name, param); - case LayerParameter_LayerType_VIDEO_DATA: - return new VideoDataLayer(param); case LayerParameter_LayerType_WINDOW_DATA: return new WindowDataLayer(param); case LayerParameter_LayerType_L1_LOSS: diff --git a/src/caffe/layers/multilane_label_layer.cpp b/src/caffe/layers/multilane_label_layer.cpp deleted file mode 100644 index 199e943cd27..00000000000 --- a/src/caffe/layers/multilane_label_layer.cpp +++ /dev/null @@ -1,213 +0,0 @@ -#include // NOLINT(readability/streams) -#include // NOLINT(readability/streams) -#include -#include -#include -#include -#include "caffe/data_layers.hpp" -#include "caffe/layer.hpp" -#include "caffe/util/io.hpp" -#include "caffe/util/math_functions.hpp" -#include "caffe/util/rng.hpp" -#include -#include -#include -#include - - -namespace py = boost::python; // create namespace variable for boost::python -namespace np = boost::numpy; // create namespace variable for boost::python -namespace caffe { - -//np::ndarray ReadLabelBatch(const string& filename, std::vector &frame_ids, std::vector &trans, -// const int height, const int width) { -//}; -template -MultilaneLabelLayer::~MultilaneLabelLayer() { - this->JoinPrefetchThread(); -} - - -template -void MultilaneLabelLayer::DataLayerSetUp(const vector*>& bottom, - vector*>* top) { - const int new_height = this->layer_param_.multilane_label_param().new_height(); - const int new_width = this->layer_param_.multilane_label_param().new_width(); - CHECK((new_height == 0 && new_width == 0) || - (new_height > 0 && new_width > 0)) << "Current implementation requires " - "new_height and new_width to be set at the same time."; - // Read the file with filenames and labels - const string& source = this->layer_param_.multilane_label_param().source(); - LOG(INFO) << "Opening schedule file " << source; - std::ifstream infile(source.c_str()); - - - - string batch_string; - - string filename; - //while (infile >> batch_string) { - while (getline (infile, batch_string)) { - if(!infile) - { - if(infile.eof()) - { - LOG(INFO) << "Reached EOF of schedule file."; - break; - } - else - LOG(FATAL)<< "Error while reading schedule file. Possibly corrupted."; - } - std::vector batch_fields; - // first split a line into fields with delimiter ",". Fields should be [filename, frame_ids, transform_ids] - boost::split(batch_fields, batch_string, boost::is_any_of(","), - boost::token_compress_on); - if(batch_fields.size()!=3) - LOG(FATAL) << "Each line must have 3 fields separated by comma, " - < frame_ids_str; - std::vector frame_ids; - boost::split(frame_ids_str, batch_fields[1], boost::is_any_of(" "), - boost::token_compress_on); - for (int f=0; f trans_ids_str; - std::vector trans_ids; - boost::split(trans_ids_str, batch_fields[2], boost::is_any_of(" "), - boost::token_compress_on); - for (int f=0; flayer_param_.multilane_label_param().shuffle()) { - // randomly shuffle data - LOG(INFO) << "Shuffling batches"; - const unsigned int prefetch_rng_seed = caffe_rng_rand(); - prefetch_rng_.reset(new Caffe::RNG(prefetch_rng_seed)); - ShuffleBatches(); - } - LOG(INFO) << "A total of " << lines_.size() << " batches."; - - lines_id_ = 0; - // Check if we would need to randomly skip a few data points - if (this->layer_param_.multilane_label_param().rand_skip()) { - unsigned int skip = caffe_rng_rand() % - this->layer_param_.multilane_label_param().rand_skip(); - LOG(INFO) << "Skipping first " << skip << " data points."; - CHECK_GT(lines_.size(), skip) << "Not enough points to skip"; - lines_id_ = skip; - } - const int crop_size = this->layer_param_.transform_param().crop_size(); - const int batch_size = this->layer_param_.multilane_label_param().batch_size(); - if (crop_size > 0) { - (*top)[0]->Reshape(batch_size, 80, crop_size, crop_size); - this->prefetch_data_.Reshape(batch_size, 80, crop_size, - crop_size); - } else { - (*top)[0]->Reshape(batch_size, 80, 15,20); - this->prefetch_data_.Reshape(batch_size, 80, 15,20); - } - LOG(INFO) << "output data size: " << (*top)[0]->num() << "," - << (*top)[0]->channels() << "," << (*top)[0]->height() << "," - << (*top)[0]->width(); - // label - //(*top)[1]->Reshape(batch_size, 1, 1, 1); - this->prefetch_label_.Reshape(batch_size, 1, 1, 1); - // datum size - this->datum_channels_ = 80; - this->datum_height_ = 15; - this->datum_width_ = 20; - this->datum_size_ = 80*15*20; -} - -template -void MultilaneLabelLayer::ShuffleBatches() { - caffe::rng_t* prefetch_rng = - static_cast(prefetch_rng_->generator()); - shuffle(lines_.begin(), lines_.end(), prefetch_rng); -} - - - -// This function is used to create a thread that prefetches the data. -template -void MultilaneLabelLayer::InternalThreadEntry() { - CHECK(this->prefetch_data_.count()); - Dtype* top_data = this->prefetch_data_.mutable_cpu_data(); - //Dtype* top_label = this->prefetch_label_.mutable_cpu_data(); - MultilaneLabelParameter multilane_label_param = this->layer_param_.multilane_label_param(); - const int batch_size = multilane_label_param.batch_size(); - const int new_height = multilane_label_param.new_height(); - const int new_width = multilane_label_param.new_width(); - - // datum scales - const int lines_size = lines_.size(); - string filename = lines_[lines_id_].first; - std::vector frameIds = lines_[lines_id_].second.first; - std::vector trans = lines_[lines_id_].second.second; - if (batch_size!=frameIds.size() || batch_size!=trans.size()) - LOG(ERROR)<<"Frame count mismatch!"; - LOG(INFO)<<"reading label batch "<(); - py::tuple shape = py::make_tuple(batch_size) ; - py::tuple stride = py::make_tuple(4) ; - py::object own1; - py::object own2; - int* framePtr = const_cast(&frameIds[0]); - int* transPtr = const_cast(&trans[0]); - np::ndarray frameArr = np::from_data(framePtr,dt,shape,stride,own1); - np::ndarray transArr = np::from_data(transPtr,dt,shape,stride,own2); - // call function - arr_handle = reader.attr("runLabelling")(filename, frameArr, transArr); - }catch(py::error_already_set const &){ - PyErr_Print(); - LOG(FATAL) <<"numpy label reading function failed!"; - } - np::ndarray pArray = np::from_object(arr_handle); - - int array_size = py::extract(pArray.attr("size")); - LOG(INFO)<<"numpy array size = "<= lines_size) { - // We have reached the end. Restart from the first. - DLOG(INFO) << "Restarting data prefetching from start."; - lines_id_ = 0; - if (this->layer_param_.image_data_param().shuffle()) { - ShuffleBatches(); - } - } -} - -INSTANTIATE_CLASS(MultilaneLabelLayer); - -} // namespace caffe diff --git a/src/caffe/layers/video_data_layer.cpp b/src/caffe/layers/video_data_layer.cpp deleted file mode 100644 index 1563cbebdfd..00000000000 --- a/src/caffe/layers/video_data_layer.cpp +++ /dev/null @@ -1,289 +0,0 @@ -#include // NOLINT(readability/streams) -#include // NOLINT(readability/streams) -#include -#include -#include -#include -#include "caffe/data_layers.hpp" -#include "caffe/layer.hpp" -#include "caffe/util/io.hpp" -#include "caffe/util/math_functions.hpp" -#include "caffe/util/rng.hpp" -#include -#include -#include -namespace py = boost::python; // create namespace variable for boost::python -namespace np = boost::numpy; // create namespace variable for boost::python -namespace caffe { - -template -VideoDataLayer::~VideoDataLayer() { - this->JoinPrefetchThread(); -} - -template -bool VideoDataLayer:: ReadVideoFrameToDatum(const string& filename, size_t id, size_t persp, - const int height, const int width, Datum* datum) { - int cam_num = (int)(filename.at(filename.length()-5) - '0'); - cam_num = cam_num>2?2:cam_num; // 3rd cam is for testing only. So using cam2 distortions as dummy - //int numPersp = mTransforms.size()/2; - cv::Mat cv_img, cv_img_origin; - bool set_ok = this->cap->set(CV_CAP_PROP_POS_FRAMES, id ); - if(!set_ok) { - LOG(ERROR)<<"Failed to set video frame"; - return false; - } - bool read_ok = this->cap->read(cv_img_origin); - if(!read_ok) { - LOG(ERROR)<<"Failed to read video frame"; - return false; - } - // resize image if necessary - if (height > 0 && width > 0) { - cv::resize(cv_img_origin, cv_img, cv::Size(width, height)); - } else { - cv_img = cv_img_origin; - } - // apply perspective transform - cv::Mat warpMatrix = this->mTransforms[persp]; - cv::warpPerspective(cv_img, cv_img, warpMatrix, cv_img.size(), cv::INTER_LINEAR, cv::BORDER_REPLICATE); - // copy data to datum - int num_channels = 3; - datum->set_channels(num_channels); - datum->set_height(cv_img.rows); - datum->set_width(cv_img.cols); - datum->set_label(0); // dummy label for now. - datum->clear_data(); - datum->clear_float_data(); - string* datum_string = datum->mutable_data(); - for (int c = 0; c < num_channels; ++c) { - for (int h = 0; h < cv_img.rows; ++h) { - for (int w = 0; w < cv_img.cols; ++w) { - datum_string->push_back( - static_cast(cv_img.at(h, w)[c])); - } - } - } - return true; -} - - -template -void VideoDataLayer::setPerspective() { - - /*try{ - Py_Initialize(); - PyRun_SimpleString("import sys"); - PyRun_SimpleString("sys.path.append(\"/afs/cs.stanford.edu/u/twangcat/scratch/caffenet/src/caffe/py_lane_label_reader/\")"); - np::initialize(); - }catch(py::error_already_set const &){ - PyErr_Print(); - LOG(FATAL) <<"boost python and numpy initialization failed."; - } - py::object list; - try{ - // initialize python helper class - py::object module = py::import("perspective_reader"); - py::object readerClass = module.attr("PerspectiveReader"); - py::object reader = readerClass(); - list = reader.attr("read")(); - }catch(py::error_already_set const &){ - PyErr_Print(); - LOG(FATAL) <<"numpy perspective reading function failed!"; - } - int num_persps = py::len(list); - for(int i=0;imTransforms.push_back(cv::Mat::eye(3, 3, CV_32F, persp_data)); - } -*/ - float persp_data[] = {2.00000000e+00, 4.85722573e-16, -1.98951966e-13, 1.55172414e-01, 2.20689655e+00, -9.93103448e+01, 2.35813973e-18, 1.46367293e-18, 2.00000000e+00}; - // essential to do a clone here otherwise data is not copied properly. not sure why - this->mTransforms.push_back(cv::Mat(3, 3, CV_32F, persp_data).clone()); - persp_data = {2.00000000e+00, -2.60991180e-16, -1.35814320e-13, -1.55172414e-01, 2.20689655e+00, -7.89095352e-14, -1.39242621e-19, -7.96792478e-19, 2.00000000e+00}; - this->mTransforms.push_back(cv::Mat(3, 3, CV_32F, persp_data).clone()); - persp_data = {2.22608696e+00, 3.01449275e-01, -1.44695652e+02, -1.74860126e-15, 2.00000000e+00, -9.94759830e-14, 2.00577402e-18, -4.60785923e-18, 2.00000000e+00}; - this->mTransforms.push_back(cv::Mat(3, 3, CV_32F, persp_data).clone()); - persp_data = {2.22608696e+00, -2.08695652e-01, -4.81606942e-14, -1.21601236e-15, 2.06956522e+00, -2.68140544e-14, 1.30767163e-18, 1.44927536e-04, 2.00000000e+00}; - this->mTransforms.push_back(cv::Mat(3, 3, CV_32F, persp_data).clone()); - persp_data = {1.76207983e+00, 2.42673669e-16, -1.35389096e-13, -1.65464295e-01, 2.18780567e+00, -8.38443898e-14, -6.37686030e-04, 3.91261819e-04, 2.00000000e+00}; - this->mTransforms.push_back(cv::Mat(3, 3, CV_32F, persp_data).clone()); - persp_data = {2.15126050e+00, -2.48222366e-01, 1.11700065e+01, -7.49400542e-16, 2.46153846e+00, -1.10769231e+02, 2.33103467e-18, 8.13151629e-19, 2.00000000e+00}; - this->mTransforms.push_back(cv::Mat(3, 3, CV_32F, persp_data).clone()); - persp_data = {1., 0., 0., 0., 1., 0., 0., 0., 1.}; - this->mTransforms.push_back(cv::Mat(3, 3, CV_32F, persp_data).clone()); -} - - - -template -void VideoDataLayer::DataLayerSetUp(const vector*>& bottom, - vector*>* top) { - const int new_height = this->layer_param_.video_data_param().new_height(); - const int new_width = this->layer_param_.video_data_param().new_width(); - CHECK((new_height == 0 && new_width == 0) || - (new_height > 0 && new_width > 0)) << "Current implementation requires " - "new_height and new_width to be set at the same time."; - // Read the file with filenames and labels - const string& source = this->layer_param_.video_data_param().source(); - setPerspective(); - - - LOG(INFO) << "Opening schedule file " << source; - std::ifstream infile(source.c_str()); - string batch_string; - string filename; - //while (infile >> batch_string) { - while (getline (infile, batch_string)) { - if(!infile) - { - if(infile.eof()) - { - LOG(INFO) << "Reached EOF of schedule file."; - break; - } - else - LOG(FATAL)<< "Error while reading schedule file. Possibly corrupted."; - } - std::vector batch_fields; - // first split a line into fields with delimiter ",". Fields should be [filename, frame_ids, transform_ids] - boost::split(batch_fields, batch_string, boost::is_any_of(","), - boost::token_compress_on); - if(batch_fields.size()!=3) - LOG(FATAL) << "Each line must have 3 fields separated by comma, " - < frame_ids_str; - std::vector frame_ids; - boost::split(frame_ids_str, batch_fields[1], boost::is_any_of(" "), - boost::token_compress_on); - for (int f=0; f trans_ids_str; - std::vector trans_ids; - boost::split(trans_ids_str, batch_fields[2], boost::is_any_of(" "), - boost::token_compress_on); - for (int f=0; flayer_param_.video_data_param().shuffle()) { - // randomly shuffle data - LOG(INFO) << "Shuffling batches"; - const unsigned int prefetch_rng_seed = caffe_rng_rand(); - prefetch_rng_.reset(new Caffe::RNG(prefetch_rng_seed)); - ShuffleBatches(); - } - LOG(INFO) << "A total of " << lines_.size() << " batches."; - - lines_id_ = 0; - // Check if we would need to randomly skip a few data points - if (this->layer_param_.video_data_param().rand_skip()) { - unsigned int skip = caffe_rng_rand() % - this->layer_param_.video_data_param().rand_skip(); - LOG(INFO) << "Skipping first " << skip << " data points."; - CHECK_GT(lines_.size(), skip) << "Not enough points to skip"; - lines_id_ = skip; - } - // Read a data batch, and use it to initialize the top blob. - this->cap = new cv::VideoCapture(lines_[lines_id_].first); - Datum datum; - CHECK(ReadVideoFrameToDatum(lines_[lines_id_].first, lines_[lines_id_].second.first[0], - lines_[lines_id_].second.second[0], new_height, new_width, &datum)); - this->cap->release(); - // image - const int crop_size = this->layer_param_.transform_param().crop_size(); - const int batch_size = this->layer_param_.video_data_param().batch_size(); - if (crop_size > 0) { - (*top)[0]->Reshape(batch_size, datum.channels(), crop_size, crop_size); - this->prefetch_data_.Reshape(batch_size, datum.channels(), crop_size, - crop_size); - } else { - (*top)[0]->Reshape(batch_size, datum.channels(), datum.height(), - datum.width()); - this->prefetch_data_.Reshape(batch_size, datum.channels(), datum.height(), - datum.width()); - } - LOG(INFO) << "output data size: " << (*top)[0]->num() << "," - << (*top)[0]->channels() << "," << (*top)[0]->height() << "," - << (*top)[0]->width(); - // label - //(*top)[1]->Reshape(batch_size, 1, 1, 1); - this->prefetch_label_.Reshape(batch_size, 1, 1, 1); - // datum size - this->datum_channels_ = datum.channels(); - this->datum_height_ = datum.height(); - this->datum_width_ = datum.width(); - this->datum_size_ = datum.channels() * datum.height() * datum.width(); -} - -template -void VideoDataLayer::ShuffleBatches() { - caffe::rng_t* prefetch_rng = - static_cast(prefetch_rng_->generator()); - shuffle(lines_.begin(), lines_.end(), prefetch_rng); -} - - - -// This function is used to create a thread that prefetches the data. -template -void VideoDataLayer::InternalThreadEntry() { - Datum datum; - CHECK(this->prefetch_data_.count()); - Dtype* top_data = this->prefetch_data_.mutable_cpu_data(); - //Dtype* top_label = this->prefetch_label_.mutable_cpu_data(); - VideoDataParameter video_data_param = this->layer_param_.video_data_param(); - const int batch_size = video_data_param.batch_size(); - const int new_height = video_data_param.new_height(); - const int new_width = video_data_param.new_width(); - - // datum scales - const int lines_size = lines_.size(); - string filename = lines_[lines_id_].first; - std::vector frameIds = lines_[lines_id_].second.first; - std::vector trans = lines_[lines_id_].second.second; - if (batch_size!=frameIds.size() || batch_size!=trans.size()) - LOG(ERROR)<<"Frame count mismatch!"; - LOG(INFO)<<"reading video file "<cap = new cv::VideoCapture(filename); - for (int item_id = 0; item_id < batch_size; ++item_id) { - // get a blob - //CHECK_GT(lines_size, lines_id_); - if (!ReadVideoFrameToDatum(filename, frameIds[item_id], trans[item_id], - new_height, new_width, &datum)) { - LOG(ERROR)<< "Error reading frame from video!"; - continue; - } - - // Apply transformations (mirror, crop...) to the data - this->data_transformer_.Transform(item_id, datum, this->mean_, top_data); - // go to the next iter - lines_id_++; - if (lines_id_ >= lines_size) { - // We have reached the end. Restart from the first. - DLOG(INFO) << "Restarting data prefetching from start."; - lines_id_ = 0; - if (this->layer_param_.image_data_param().shuffle()) { - ShuffleBatches(); - } - } - } - this->cap->release(); -} - -INSTANTIATE_CLASS(VideoDataLayer); - -} // namespace caffe