-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_modeling.py
277 lines (233 loc) · 10.7 KB
/
preprocess_modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import gc
import sys
import logging
import yaml
import numpy as np
import pandas as pd
from pandas.tseries.holiday import USFederalHolidayCalendar as calendar
from utils import timer, load_data, reduce_mem_usage
from encoders import GaussianTargetEncoder
# define groupings and corresponding priors
groups_and_priors = {
# single encodings
("hour",): None,
("weekday",): None,
("month",): None,
("building_id",): None,
("primary_use",): None,
("site_id",): None,
# ("meter",): None,
# # second-order interactions
# ("meter", "hour"): ["gte_meter", "gte_hour"],
# ("meter", "weekday"): ["gte_meter", "gte_weekday"],
# ("meter", "month"): ["gte_meter", "gte_month"],
# ("meter", "building_id"): ["gte_meter", "gte_building_id"],
# ("meter", "primary_use"): ["gte_meter", "gte_primary_use"],
# ("meter", "site_id"): ["gte_meter", "gte_site_id"],
# # higher-order interactions with building_id
# ("meter", "building_id", "hour"): ["gte_meter_building_id", "gte_meter_hour"],
# ("meter", "building_id", "weekday"): ["gte_meter_building_id", "gte_meter_weekday"],
# ("meter", "building_id", "month"): ["gte_meter_building_id", "gte_meter_month"],
}
def process_timestamp(df):
df.timestamp = pd.to_datetime(df.timestamp)
df.timestamp = (
df.timestamp - pd.to_datetime("2016-01-01")
).dt.total_seconds() // 3600
def process_weather(
df, dataset, fix_timestamps=True, interpolate_na=True, add_na_indicators=True
):
if fix_timestamps:
site_GMT_offsets = [-5, 0, -7, -5, -8, 0, -5, -5, -5, -6, -7, -5, 0, -6, -5, -5]
GMT_offset_map = {site: offset for site, offset in enumerate(site_GMT_offsets)}
df.timestamp = df.timestamp + df.site_id.map(GMT_offset_map)
if interpolate_na:
site_dfs = []
for site_id in df.site_id.unique():
# Make sure that we include all possible hours so that we can interpolate evenly
if dataset == "train":
site_df = (
df[df.site_id == site_id]
.set_index("timestamp")
.reindex(range(8784))
)
elif dataset == "test":
site_df = (
df[df.site_id == site_id]
.set_index("timestamp")
.reindex(range(8784, 26304))
)
else:
raise ValueError(f"dataset={dataset} not recognized")
site_df.site_id = site_id
for col in [c for c in site_df.columns if c != "site_id"]:
if add_na_indicators:
site_df[f"had_{col}"] = ~site_df[col].isna()
site_df[col] = site_df[col].interpolate(
limit_direction="both",
method="spline",
order=3,
)
# Some sites are completely missing some columns, so use this fallback
site_df[col] = site_df[col].fillna(df[col].median())
site_dfs.append(site_df)
df = pd.concat(
site_dfs
).reset_index() # make timestamp back into a regular column
if add_na_indicators:
for col in df.columns:
if df[col].isna().any():
df[f"had_{col}"] = ~df[col].isna()
return df.fillna(-1) # .set_index(["site_id", "timestamp"])
def add_lag_feature(df, window=3, group_cols="site_id", lag_cols=["air_temperature"]):
rolled = df.groupby(group_cols)[lag_cols].rolling(
window=window, min_periods=0, center=True
)
lag_mean = rolled.mean().reset_index().astype(np.float16)
lag_max = rolled.quantile(0.95).reset_index().astype(np.float16)
lag_min = rolled.quantile(0.05).reset_index().astype(np.float16)
lag_std = rolled.std().reset_index().astype(np.float16)
for col in lag_cols:
df[f"{col}_mean_lag{window}"] = lag_mean[col]
df[f"{col}_max_lag{window}"] = lag_max[col]
df[f"{col}_min_lag{window}"] = lag_min[col]
df[f"{col}_std_lag{window}"] = lag_std[col]
def add_features(df):
# time features
df["hour"] = df.ts.dt.hour
df["weekday"] = df.ts.dt.weekday
df["month"] = df.ts.dt.month
df["year"] = df.ts.dt.year
# time interactions
df["weekday_hour"] = df.weekday.astype(str) + "-" + df.hour.astype(str)
# apply cyclic encoding of periodic features
df["hour_x"] = np.cos(2 * np.pi * df.timestamp / 24)
df["hour_y"] = np.sin(2 * np.pi * df.timestamp / 24)
df["month_x"] = np.cos(2 * np.pi * df.timestamp / (30.4 * 24))
df["month_y"] = np.sin(2 * np.pi * df.timestamp / (30.4 * 24))
df["weekday_x"] = np.cos(2 * np.pi * df.timestamp / (7 * 24))
df["weekday_y"] = np.sin(2 * np.pi * df.timestamp / (7 * 24))
# meta data features
df["year_built"] = df["year_built"] - 1900
# bulding_id interactions
# bm_ = df.building_id.astype(str) + "-" + df.meter.astype(str) + "-"
bm_ = df.building_id.astype(str) + "-"
df["building_weekday_hour"] = bm_ + df.weekday_hour
df["building_weekday"] = bm_ + df.weekday.astype(str)
df["building_month"] = bm_ + df.month.astype(str)
df["building_hour"] = bm_ + df.hour.astype(str)
# df["building_meter"] = bm_
# get holidays
dates_range = pd.date_range(start="2015-12-31", end="2019-01-01")
us_holidays = calendar().holidays(start=dates_range.min(), end=dates_range.max())
df["is_holiday"] = (df.ts.dt.date.astype("datetime64").isin(us_holidays)).astype(
np.int8
)
if __name__ == "__main__":
# load config file from CLI
with open(str(sys.argv[1]), "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
algorithm = config["algorithm"]
discord_file = config["discord_file"]
data_location = config["data_location"]
discord_location = config["discord_location"]
output_location = config["output_location"]
# logging file
logging.basicConfig(
filename=algorithm + ".log",
level=logging.INFO,
format="%(asctime)s:%(levelname)s:%(message)s",
)
logging.info(f"Experiment: {algorithm}")
with timer("Loading data"):
logging.info("Loading data")
train, test = load_data("input", data_location=data_location)
building_meta = load_data("meta", data_location=data_location)
train_weather, test_weather = load_data("weather", data_location=data_location)
with timer("Process timestamp"):
logging.info("Process timestamp")
train["ts"] = pd.to_datetime(train.timestamp)
test["ts"] = pd.to_datetime(test.timestamp)
process_timestamp(train)
process_timestamp(test)
process_timestamp(train_weather)
process_timestamp(test_weather)
with timer("Process weather"):
logging.info("Process weather")
process_weather(train_weather, "train")
process_weather(test_weather, "test")
for window_size in [7, 73]:
add_lag_feature(train_weather, window=window_size)
add_lag_feature(test_weather, window=window_size)
with timer("Combine data"):
logging.info("Combine data")
train = pd.merge(train, building_meta, "left", "building_id")
train = pd.merge(train, train_weather, "left", ["site_id", "timestamp"])
test = pd.merge(test, building_meta, "left", "building_id")
test = pd.merge(test, test_weather, "left", ["site_id", "timestamp"])
with timer("Flag bad meter readings"):
logging.info("Flag bad meter readings")
# loading discords/outliers
is_bad_meter_reading = load_data(
"discord", discord_location=discord_location, discord_file=discord_file
).values
train["is_bad_meter_reading"] = is_bad_meter_reading
with timer("Correct site 0 meter reading"):
logging.info("Correct site 0 meter reading")
train.loc[(train.site_id == 0) & (train.meter == 0), "meter_reading"] *= 0.2931
with timer("Add base features to train"):
logging.info("Add base features to train")
add_features(train)
with timer("Add base features to test"):
logging.info("Add base features to test")
add_features(test)
with timer("Free up memory"):
logging.info("Free up memory")
del train_weather, test_weather, building_meta
gc.collect()
with timer("Reduce memory usage"):
logging.info("Reduce memory usage")
train, _ = reduce_mem_usage(train, skip_cols=["ts", "timestamp"], verbose=False)
test, _ = reduce_mem_usage(test, skip_cols=["ts", "timestamp"], verbose=False)
with timer("Add target encoding features - train"):
logging.info("Add target encoding features - train")
train["target"] = np.log1p(train.meter_reading)
test["target"] = np.mean(train["target"])
features = []
good_train = train[train.is_bad_meter_reading.values == 0].copy()
good_train_ = good_train.copy()
for group_cols, prior_cols in groups_and_priors.items():
print(group_cols)
features.append(f"gte_{'_'.join(group_cols)}")
gte = GaussianTargetEncoder(list(group_cols), "target", prior_cols)
good_train[features[-1]] = gte.fit_transform(good_train)
train[features[-1]] = gte.transform(train)
with timer("Save as pickle - train"):
logging.info("Save as pickle - train")
train.drop(["ts", "target"], 1, inplace=True)
train, _ = reduce_mem_usage(train, skip_cols=["ts", "timestamp"], verbose=False)
train.to_pickle(f"{output_location}/train_clean_{algorithm}.pkl")
with timer("Free up memory"):
logging.info("Free up memory")
del train, good_train, gte
gc.collect()
with timer("Add target encoding features - test"):
logging.info("Add target encoding features - test")
features = []
good_train = good_train_
for group_cols, prior_cols in groups_and_priors.items():
print(group_cols)
features.append(f"gte_{'_'.join(group_cols)}")
gte = GaussianTargetEncoder(list(group_cols), "target", prior_cols)
good_train[features[-1]] = gte.fit_transform(good_train)
test[features[-1]] = gte.transform(test)
with timer("Free up memory"):
logging.info("Free up memory")
del good_train, good_train_, gte
gc.collect()
with timer("Save as pickle - test"):
logging.info("Save as pickle - test")
test.drop(["ts", "target"], 1, inplace=True)
test, _ = reduce_mem_usage(test, skip_cols=["ts", "timestamp"], verbose=False)
gc.collect()
test.to_pickle(f"{output_location}/test_clean_{algorithm}.pkl")