-
Notifications
You must be signed in to change notification settings - Fork 0
/
classifier.py
317 lines (254 loc) · 12.6 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import json
from PhemeDataset import PhemeDatasetES
from sklearn.metrics import classification_report, precision_score, recall_score, mean_squared_error, accuracy_score, balanced_accuracy_score
from sklearn.tree import DecisionTreeClassifier, _tree
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.cluster import KMeans
from sklearn.naive_bayes import MultinomialNB
dataset = PhemeDatasetES(hosts="http://localhost:9200", index_name="pheme_tweet_data")
EVENTS = [
'charliehebdo',
'germanwings-crash',
'sydneysiege',
'ottawashooting',
'ferguson'
]
TIME_FRAME_SIZES = [ # In terms of minutes
2,
5,
10,
30,
60,
]
SELECTED_FEATURES = [
'engagement_score',
'role_score',
'user_follower_count',
'reaction_speed'
]
class BasicVoter:
def fit(self, X, y):
pass
def predict(self, X):
y = []
for x in X:
if sum(x) > int(len(x) / 2):
y.append(1)
else:
y.append(0)
return y
def tree_to_code(tree, feature_names):
tree_ = tree.tree_
feature_name = [
feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature
]
print("def tree({}):".format(", ".join(feature_names)))
def recurse(node, depth):
indent = " " * depth
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
print("{}if {} <= {}:".format(indent, name, threshold))
recurse(tree_.children_left[node], depth + 1)
print("{}else: # if {} > {}".format(indent, name, threshold))
recurse(tree_.children_right[node], depth + 1)
else:
print("{}return {}".format(indent, tree_.value[node]))
recurse(0, 1)
class EventSelector:
def __init__(self):
self.events = EVENTS
self.test_event = 0
def get_one_partition(self):
for partition in self.__iter__():
return partition
def __iter__(self):
while True:
if self.test_event == len(self.events):
break
yield [self.events[i] for i in range(len(self.events)) if i != self.test_event], \
self.events[self.test_event]
self.test_event = (self.test_event + 1)
class RumorClassifier:
def __init__(self):
self.representations = {}
for e in EVENTS:
self.representations[e] = dataset.read_combined_features_from_file(e)
for s in SELECTED_FEATURES:
max_score = 0
min_score = 999999
for e in EVENTS:
for rep in self.representations[e]:
if rep[s] > max_score:
max_score = rep[s]
if rep[s] < min_score:
min_score = rep[s]
for e in EVENTS:
for rep in self.representations[e]:
rep[s] = (rep[s] - min_score)\
/ (max_score - min_score)
def __representation_to_prop_level1_features(self, event_name, t):
X = []
y = []
for rep in self.representations[event_name]:
X.append(rep['vector-' + str(t)])
y.append(rep['rumor'])
return X, y
def __representation_to_level2_features(self, event_name, props):
X = []
y = []
for i in range(len(self.representations[event_name])):
X.extend([*list(self.representations[event_name][i]['features'].values()), *props[i]])
y.append(self.representations[event_name][i]['rumor'])
return X, y
def correct_padding(self, X1, X2):
max_len = max(len(X1[0]), len(X2[0]))
if len(X2[0]) == max_len:
for i in range(len(X1)):
X1[i].extend([0 for _ in range(max_len - len(X1[i]))])
else:
for i in range(len(X2)):
X2[i].extend([0 for _ in range(max_len - len(X2[i]))])
return X1,X2
def train_and_evaluate(self):
prob_models = {}
e = EventSelector()
results = {
}
for train_events, test_event in e:
results[test_event] = {}
for t_size in TIME_FRAME_SIZES:
model = MultinomialNB()
model_train_data_X = []
model_train_data_y = []
model_test_data_X, model_test_data_y = self.__representation_to_prop_level1_features(test_event, t_size)
for event in train_events:
X, y = self.__representation_to_prop_level1_features(event, t_size)
model_train_data_X.extend(X)
model_train_data_y.extend(y)
model.fit(model_train_data_X, model_train_data_y)
y_pred_train = model.predict_proba(model_train_data_X)[:, 1]
#y_pred_train = model.predict(model_train_data_X)
train_loss = mean_squared_error(model_train_data_y, y_pred_train)
print("Train Loss %s: %f" % (str(t_size), train_loss))
y_pred = model.predict_proba(model_test_data_X)[:, 1]
#y_pred = model.predict(model_test_data_X)
test_loss = mean_squared_error(model_test_data_y, y_pred)
print("Test Loss %s: %f" % (str(t_size), test_loss))
prob_models[str(t_size)] = {}
prob_models[str(t_size)]['model'] = model
prob_models[str(t_size)]['preds_train'] = y_pred_train
prob_models[str(t_size)]['preds_test'] = y_pred
level2_train_X = []
level2_train_y = []
level2_test_X = []
level2_test_y = []
for e in train_events:
for i in range(len(self.representations[e])):
X_train = []
for t_size in TIME_FRAME_SIZES:
X_train.append(prob_models[str(t_size)]['preds_train'][i])
X_train.extend([v for k, v in self.representations[e][i].items() if k != 'rumor' and k in SELECTED_FEATURES])
level2_train_X.append(X_train)
level2_train_y.append(self.representations[e][i]['rumor'])
for i in range(len(self.representations[test_event])):
X_test = []
for t_size in TIME_FRAME_SIZES:
X_test.append(prob_models[str(t_size)]['preds_test'][i])
X_test.extend([v for k, v in self.representations[test_event][i].items() if k != 'rumor' and k in SELECTED_FEATURES])
level2_test_X.append(X_test)
level2_test_y.append(self.representations[test_event][i]['rumor'])
c_0 = len([y for y in level2_train_y if y == 0])
c_1 = len(level2_train_y) - c_0
class_weights = {0: 1, 1: c_0/c_1}
decision_tree = DecisionTreeClassifier(max_depth=8)
decision_tree.fit(level2_train_X, level2_train_y)
level2_pred_test = decision_tree.predict(level2_test_X)
level2_pred_train = decision_tree.predict(level2_train_X)
c_train = classification_report(level2_train_y, level2_pred_train)
c_test = classification_report(level2_test_y, level2_pred_test)
precision = precision_score(level2_test_y, level2_pred_test)
recall = recall_score(level2_test_y, level2_pred_test)
f1 = 2 * precision * recall / (precision + recall)
accuracy = accuracy_score(level2_test_y, level2_pred_test)
balanced_accuracy = balanced_accuracy_score(level2_test_y, level2_pred_test)
results[test_event]['decision_tree'] = {'precision': precision,
'recall': recall,
'F1': f1,
'accuracy': accuracy,
'balanced_accuracy': balanced_accuracy
}
print("*-*-*-*-*-DT Classificiation Results TEST (" + test_event + ")-*-*-*-*-*-*-*-*")
print(c_test)
mlp = MLPClassifier(hidden_layer_sizes=(16,), max_iter=1200)
mlp.fit(level2_train_X, level2_train_y)
level2_pred_test = mlp.predict(level2_test_X)
level2_pred_train = mlp.predict(level2_train_X)
c_test = classification_report(level2_test_y, level2_pred_test)
precision = precision_score(level2_test_y, level2_pred_test)
recall = recall_score(level2_test_y, level2_pred_test)
f1 = 2 * precision * recall / (precision + recall)
accuracy = accuracy_score(level2_test_y, level2_pred_test)
balanced_accuracy = balanced_accuracy_score(level2_test_y, level2_pred_test)
results[test_event]['MLP'] = {'precision': precision, 'recall': recall, 'F1': f1,
'accuracy': accuracy,
'balanced_accuracy': balanced_accuracy
}
print("*-*-*-*-*-MLP Classificiation Results TEST (" + test_event + ")-*-*-*-*-*-*-*-*")
print(c_test)
svc = SVC(C = 10.0)
svc.fit(level2_train_X, level2_train_y)
level2_pred_test = svc.predict(level2_test_X)
level2_pred_train = svc.predict(level2_train_X)
c_test = classification_report(level2_test_y, level2_pred_test)
precision = precision_score(level2_test_y, level2_pred_test)
recall = recall_score(level2_test_y, level2_pred_test)
f1 = 2 * precision * recall / (precision + recall)
accuracy = accuracy_score(level2_test_y, level2_pred_test)
balanced_accuracy = balanced_accuracy_score(level2_test_y, level2_pred_test)
results[test_event]['SVM'] = {'precision': precision, 'recall': recall, 'F1': f1,
'accuracy': accuracy,
'balanced_accuracy': balanced_accuracy
}
print("*-*-*-*-*-SVM Classificiation Results TEST (" + test_event + ")-*-*-*-*-*-*-*-*")
print(c_test)
rf = RandomForestClassifier(n_estimators=150, max_depth=10)
rf.fit(level2_train_X, level2_train_y)
level2_pred_test = rf.predict(level2_test_X)
level2_pred_train = rf.predict(level2_train_X)
c_test = classification_report(level2_test_y, level2_pred_test)
precision = precision_score(level2_test_y, level2_pred_test)
recall = recall_score(level2_test_y, level2_pred_test)
f1 = 2 * precision * recall / (precision + recall)
accuracy = accuracy_score(level2_test_y, level2_pred_test)
balanced_accuracy = balanced_accuracy_score(level2_test_y, level2_pred_test)
results[test_event]['RF'] = {'precision': precision, 'recall': recall, 'F1': f1,
'accuracy': accuracy,
'balanced_accuracy': balanced_accuracy
}
print("*-*-*-*-*-RF Classificiation Results TEST (" + test_event + ")-*-*-*-*-*-*-*-*")
print(c_test)
km = KMeans(n_clusters=2)
km.fit(level2_train_X, level2_train_y)
level2_pred_test = km.predict(level2_test_X)
level2_pred_train = km.predict(level2_train_X)
c_test = classification_report(level2_test_y, level2_pred_test)
precision = precision_score(level2_test_y, level2_pred_test)
recall = recall_score(level2_test_y, level2_pred_test)
accuracy = accuracy_score(level2_test_y, level2_pred_test)
balanced_accuracy = balanced_accuracy_score(level2_test_y, level2_pred_test)
f1 = 2 * precision * recall / (precision + recall)
results[test_event]['KMeans'] = {'precision': precision, 'recall': recall, 'F1': f1,
'accuracy': accuracy,
'balanced_accuracy': balanced_accuracy
}
print("*-*-*-*-*-Kmeans Classificiation Results TEST (" + test_event + ")-*-*-*-*-*-*-*-*")
print(c_test)
return results
c = RumorClassifier()
results = c.train_and_evaluate()
print(json.dumps(results, indent=2))
print("Bitti")