-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathdata.py
99 lines (74 loc) · 3.29 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import sugartensor as tf
import numpy as np
__author__ = '[email protected]'
class ComTrans(object):
def __init__(self, batch_size=32, name='train'):
# load train corpus
sources, targets = self._load_corpus(mode='train')
# to constant tensor
source = tf.convert_to_tensor(sources)
target = tf.convert_to_tensor(targets)
# create queue from constant tensor
source, target = tf.train.slice_input_producer([source, target])
# create batch queue
batch_queue = tf.train.shuffle_batch([source, target], batch_size,
num_threads=32, capacity=batch_size*64,
min_after_dequeue=batch_size*32, name=name)
# split data
self.source, self.target = batch_queue
# calc total batch count
self.num_batch = len(sources) // batch_size
# print info
tf.sg_info('Train data loaded.(total data=%d, total batch=%d)' % (len(sources), self.num_batch))
def _load_corpus(self, mode='train'):
# load en-fr parallel corpus
from nltk.corpus import comtrans
als = comtrans.aligned_sents('alignment-en-fr.txt')
# make character-level parallel corpus
all_byte, sources, targets = [], [], []
for al in als:
src = [ord(ch) for ch in ' '.join(al.words)] # source language byte stream
tgt = [ord(ch) for ch in ' '.join(al.mots)] # target language byte stream
sources.append(src)
targets.append(tgt)
all_byte.extend(src + tgt)
# make vocabulary
self.index2byte = [0, 1] + list(np.unique(all_byte)) # add <EMP>, <EOS> tokens
self.byte2index = {}
for i, b in enumerate(self.index2byte):
self.byte2index[b] = i
self.voca_size = len(self.index2byte)
self.max_len = 150
# remove short and long sentence
src, tgt = [], []
for s, t in zip(sources, targets):
if 50 <= len(s) < self.max_len and 50 <= len(t) < self.max_len:
src.append(s)
tgt.append(t)
# convert to index list and add <EOS> to end of sentence
for i in range(len(src)):
src[i] = [self.byte2index[ch] for ch in src[i]] + [1]
tgt[i] = [self.byte2index[ch] for ch in tgt[i]] + [1]
# zero-padding
for i in range(len(tgt)):
src[i] += [0] * (self.max_len - len(src[i]))
tgt[i] += [0] * (self.max_len - len(tgt[i]))
# swap source and target : french -> english
return tgt, src
def to_batch(self, sentences):
# convert to index list and add <EOS> to end of sentence
for i in range(len(sentences)):
sentences[i] = [self.byte2index[ord(ch)] for ch in sentences[i]] + [1]
# zero-padding
for i in range(len(sentences)):
sentences[i] += [0] * (self.max_len - len(sentences[i]))
return sentences
def print_index(self, indices):
for i, index in enumerate(indices):
str_ = ''
for ch in index:
if ch > 1:
str_ += unichr(self.index2byte[ch])
elif ch == 1: # <EOS>
break
print '[%d]' % i + str_