You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Dear All,
Hopefully the reprex is self-explanatory.
I plan to use anomalize on non-time series data.
It should still work according to the documentation (without the time series decomposition) and it does, but not on non-time series grouped data.
Any ideas?
library(tidyverse)
library(anomalize)
#> ══ Use anomalize to improve your Forecasts by 50%! ═════════════════════════════#> Business Science offers a 1-hour course - Lab #18: Time Series Anomaly Detection!#> </> Learn more at: https://university.business-science.io/p/learning-labs-pro </>test1<-tidyverse_cran_downloads %>%
time_decompose(count) %>%
anomalize(remainder)
#> Registered S3 method overwritten by 'quantmod':#> method from#> as.zoo.data.frame zoo
print(test1) ##and this works fine#> # A time tibble: 6,375 x 9#> # Index: date#> # Groups: package [15]#> package date observed season trend remainder remainder_l1 remainder_l2#> <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>#> 1 broom 2017-01-01 1053. -1007. 1708. 352. -1725. 1704.#> 2 broom 2017-01-02 1481 340. 1731. -589. -1725. 1704.#> 3 broom 2017-01-03 1851 563. 1753. -465. -1725. 1704.#> 4 broom 2017-01-04 1947 526. 1775. -354. -1725. 1704.#> 5 broom 2017-01-05 1927 430. 1798. -301. -1725. 1704.#> 6 broom 2017-01-06 1948 136. 1820. -8.11 -1725. 1704.#> 7 broom 2017-01-07 1542 -988. 1842. 688. -1725. 1704.#> 8 broom 2017-01-08 1479. -1007. 1864. 622. -1725. 1704.#> 9 broom 2017-01-09 2057 340. 1887. -169. -1725. 1704.#> 10 broom 2017-01-10 2278 563. 1909. -194. -1725. 1704.#> # … with 6,365 more rows, and 1 more variable: anomaly <chr>test2<-tidyverse_cran_downloads %>%
group_by(package) %>%
time_decompose(count) %>%
anomalize(remainder)
print(test2) ##and also this works fine#> # A time tibble: 6,375 x 9#> # Index: date#> # Groups: package [15]#> package date observed season trend remainder remainder_l1 remainder_l2#> <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>#> 1 broom 2017-01-01 1053. -1007. 1708. 352. -1725. 1704.#> 2 broom 2017-01-02 1481 340. 1731. -589. -1725. 1704.#> 3 broom 2017-01-03 1851 563. 1753. -465. -1725. 1704.#> 4 broom 2017-01-04 1947 526. 1775. -354. -1725. 1704.#> 5 broom 2017-01-05 1927 430. 1798. -301. -1725. 1704.#> 6 broom 2017-01-06 1948 136. 1820. -8.11 -1725. 1704.#> 7 broom 2017-01-07 1542 -988. 1842. 688. -1725. 1704.#> 8 broom 2017-01-08 1479. -1007. 1864. 622. -1725. 1704.#> 9 broom 2017-01-09 2057 340. 1887. -169. -1725. 1704.#> 10 broom 2017-01-10 2278 563. 1909. -194. -1725. 1704.#> # … with 6,365 more rows, and 1 more variable: anomaly <chr>## From the documentation:## For non-time series data (data without trend), the anomalize()## function can be used without time## series decomposition.test3<-tidyverse_cran_downloads %>%
select(-date) %>%
filter(package=="broom") %>%
anomalize(count)
print(test3) ## OK!#> # A tibble: 425 x 5#> count package count_l1 count_l2 anomaly#> <dbl> <chr> <dbl> <dbl> <chr> #> 1 1053 broom -2535. 7965. No #> 2 1481 broom -2535. 7965. No #> 3 1851 broom -2535. 7965. No #> 4 1947 broom -2535. 7965. No #> 5 1927 broom -2535. 7965. No #> 6 1948 broom -2535. 7965. No #> 7 1542 broom -2535. 7965. No #> 8 1479 broom -2535. 7965. No #> 9 2057 broom -2535. 7965. No #> 10 2278 broom -2535. 7965. No #> # … with 415 more rows### now let us try this on grouped datatest4<-tidyverse_cran_downloads %>%
select(-date) %>%
group_by(package) %>%
anomalize(count)
#> Error in value[[3L]](cond): Error in prep_tbl_time(): No date or datetime column found.
print(test4) ##and now an error ## what to do?#> Error in print(test4): object 'test4' not found
Dear All,
Hopefully the reprex is self-explanatory.
I plan to use anomalize on non-time series data.
It should still work according to the documentation (without the time series decomposition) and it does, but not on non-time series grouped data.
Any ideas?
Created on 2020-07-30 by the reprex package (v0.3.0)
The text was updated successfully, but these errors were encountered: