Skip to content

buzzki11/Semantic-Segmentation-Evaluation

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 

Repository files navigation

Semantic-Segmentation-Evaluation

Semantic Segmentation Evaluation

Annotation Tools:

https://github.com/AKSHAYUBHAT/ImageSegmentation
https://github.com/kyamagu/js-segment-annotator

Datasets:

Stanford Background Dataset
http://dags.stanford.edu/projects/scenedataset.html
Sift Flow Dataset
http://people.csail.mit.edu/celiu/SIFTflow/
Barcelona Dataset
http://www.cs.unc.edu/~jtighe/Papers/ECCV10/
Microsoft COCO dataset
http://mscoco.org/
MSRC Dataset
http://research.microsoft.com/en-us/projects/objectclassrecognition/

Results:

http://rodrigob.github.io/are_we_there_yet/build/semantic_labeling_datasets_results.html
https://github.com/kjw0612/awesome-deep-vision#semantic-segmentation

Semantic Segmentation Code:

Simultaneous detection and segmentation
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sds/
https://github.com/bharath272/sds_eccv2014

A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation
'Fully Convolutional Models for Semantic Segmentation', Jonathan Long, Evan Shelhamer and Trevor Darrell, CVPR, 2015
https://github.com/vlfeat/matconvnet-fcn
https://github.com/shelhamer/fcn.berkeleyvision.org

TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class Object Recognition and Segmentation
http://jamie.shotton.org/work/code.html
https://github.com/amueller/textonboost

Semantic Segmentation for Aerial Imagery using Convolutional Neural Network
https://github.com/mitmul/ssai

"Learning Deconvolution Network for Semantic Segmentation"
https://github.com/HyeonwooNoh/DeconvNet

"Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation"
https://github.com/HyeonwooNoh/DecoupledNet

"Convolutional (Patch) Networks for Semantic Segmentation"
https://github.com/cvjena/cn24

"Learning to Propose Objects"
http://vladlen.info/publications/learning-to-propose-objects/
https://github.com/philkr/lpo

"Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials"
http://vladlen.info/publications/efficient-inference-in-fully-connected-crfs-with-gaussian-edge-potentials/

"Nonparametric Scene Parsing via Label Transfer"
http://people.csail.mit.edu/celiu/LabelTransfer/code.html

"Conditional Random Fields as Recurrent Neural Networks"
https://github.com/torrvision/crfasrnn

Graphical Models / Conditional Random Field Toolbox
http://users.cecs.anu.edu.au/~jdomke/JGMT/

SegNet
http://mi.eng.cam.ac.uk/projects/segnet/tutorial.html
https://github.com/alexgkendall/caffe-segnet

DeepLab
https://bitbucket.org/deeplab/deeplab-public/
http://ccvl.stat.ucla.edu/software/deeplab/deeplab/
https://github.com/cdmh/deeplab-public
https://github.com/cvlab-epfl/densecrf

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials
http://www.philkr.net/home/densecrf
https://github.com/amiltonwong/segmentation/blob/master/segmentation.ipynb

https://github.com/jliemansifry/super-simple-semantic-segmentation

mxnet fcn-xs
https://github.com/tornadomeet/mxnet/tree/seg/example/fcn-xs

https://www.quora.com/How-can-one-train-and-test-conditional-random-field-CRF-in-Python-on-our-own-training-testing-dataset
https://github.com/tpeng/python-crfsuite
https://github.com/chokkan/crfsuite

https://sites.google.com/site/zeppethefake/semantic-segmentation-crf-baseline

http://cvlab.postech.ac.kr/research/deconvnet/

Pixelwise segmentation
https://github.com/naibaf7/caffe_neural_tool

U-Net: Convolutional Networks for Biomedical Image Segmentation
http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://github.com/dmlc/mxnet/issues/1514

About

Semantic Segmentation Evaluation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published