forked from winitzki/sofp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctional-programming-advantages.tex
681 lines (571 loc) · 26.5 KB
/
functional-programming-advantages.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
%% LyX 2.3.3 created this file. For more info, see http://www.lyx.org/.
%% Do not edit unless you really know what you are doing.
\documentclass[english]{beamer}
\usepackage[T1]{fontenc}
\usepackage[latin9]{inputenc}
\setcounter{secnumdepth}{3}
\setcounter{tocdepth}{3}
\usepackage{babel}
\ifx\hypersetup\undefined
\AtBeginDocument{%
\hypersetup{unicode=true,pdfusetitle,
bookmarks=true,bookmarksnumbered=false,bookmarksopen=false,
breaklinks=false,pdfborder={0 0 1},backref=false,colorlinks=true}
}
\else
\hypersetup{unicode=true,pdfusetitle,
bookmarks=true,bookmarksnumbered=false,bookmarksopen=false,
breaklinks=false,pdfborder={0 0 1},backref=false,colorlinks=true}
\fi
\makeatletter
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LyX specific LaTeX commands.
%% Because html converters don't know tabularnewline
\providecommand{\tabularnewline}{\\}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Textclass specific LaTeX commands.
% this default might be overridden by plain title style
\newcommand\makebeamertitle{\frame{\maketitle}}%
% (ERT) argument for the TOC
\AtBeginDocument{%
\let\origtableofcontents=\tableofcontents
\def\tableofcontents{\@ifnextchar[{\origtableofcontents}{\gobbletableofcontents}}
\def\gobbletableofcontents#1{\origtableofcontents}
}
\newenvironment{lyxcode}
{\par\begin{list}{}{
\setlength{\rightmargin}{\leftmargin}
\setlength{\listparindent}{0pt}% needed for AMS classes
\raggedright
\setlength{\itemsep}{0pt}
\setlength{\parsep}{0pt}
\normalfont\ttfamily}%
\def\{{\char`\{}
\def\}{\char`\}}
\def\textasciitilde{\char`\~}
\item[]}
{\end{list}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% User specified LaTeX commands.
\usetheme[secheader]{Boadilla}
\usecolortheme{seahorse}
\title[Why functional programming]{What did functional programming ever do for us (software engineers)?}
\subtitle{An extreme pragmatic and un-academic approach}
\author{Sergei Winitzki}
\date{2020-08-22}
\institute[ABTB]{Academy by the Bay}
\setbeamertemplate{headline}{} % disable headline at top
\setbeamertemplate{navigation symbols}{} % disable navigation bar at bottom
\usepackage[all]{xy} % xypic
%\makeatletter
% Macros to assist LyX with XYpic when using scaling.
\newcommand{\xyScaleX}[1]{%
\makeatletter
\xydef@\xymatrixcolsep@{#1}
\makeatother
} % end of \xyScaleX
\makeatletter
\newcommand{\xyScaleY}[1]{%
\makeatletter
\xydef@\xymatrixrowsep@{#1}
\makeatother
} % end of \xyScaleY
% Double-stroked fonts to replace the non-working \mathbb{1}.
\usepackage{bbold}
\DeclareMathAlphabet{\bbnumcustom}{U}{BOONDOX-ds}{m}{n} % Use BOONDOX-ds or bbold.
\newcommand{\custombb}[1]{\bbnumcustom{#1}}
% The LyX document will define a macro \bbnum{#1} that calls \custombb{#1}.
\usepackage{relsize} % make math symbols larger or smaller
\usepackage{stmaryrd} % some extra symbols such as \fatsemi
% Note: using \forwardcompose inside a \text{} will cause a LaTeX error!
\newcommand{\forwardcompose}{\hspace{1.5pt}\ensuremath\mathsmaller{\fatsemi}\hspace{1.5pt}}
% Make underline green.
\definecolor{greenunder}{rgb}{0.1,0.6,0.2}
%\newcommand{\munderline}[1]{{\color{greenunder}\underline{{\color{black}#1}}\color{black}}}
\def\mathunderline#1#2{\color{#1}\underline{{\color{black}#2}}\color{black}}
% The LyX document will define a macro \gunderline{#1} that will use \mathunderline with the color `greenunder`.
%\def\gunderline#1{\mathunderline{greenunder}{#1}} % This is now defined by LyX itself with GUI support.
% Scala syntax highlighting. See https://tex.stackexchange.com/questions/202479/unable-to-define-scala-language-with-listings
%\usepackage[T1]{fontenc}
%\usepackage[utf8]{inputenc}
%\usepackage{beramono}
%\usepackage{listings}
% The listing settings are now supported by LyX in a separate section "Listings".
\usepackage{xcolor}
\definecolor{scalakeyword}{rgb}{0.16,0.07,0.5}
\definecolor{dkgreen}{rgb}{0,0.6,0}
\definecolor{gray}{rgb}{0.5,0.5,0.5}
\definecolor{mauve}{rgb}{0.58,0,0.82}
\definecolor{aqua}{rgb}{0.9,0.96,0.999}
\definecolor{scalatype}{rgb}{0.2,0.3,0.2}
\makeatother
\usepackage{listings}
\lstset{language=Scala,
morekeywords={{scala}},
otherkeywords={=,=>,<-,<\%,<:,>:,\#,@,:,[,],.,???},
keywordstyle={\color{scalakeyword}},
morekeywords={[2]{String,Short,Int,Long,Char,Boolean,Double,Float,BigDecimal,Seq,Map,Set,List,Option,Either,Future,Vector,Range,IndexedSeq,Try,true,false,None,Some,Left,Right,Nothing,Any,Array,Unit,Iterator,Stream}},
keywordstyle={[2]{\color{scalatype}}},
frame=tb,
aboveskip={1.5mm},
belowskip={0.5mm},
showstringspaces=false,
columns=fullflexible,
keepspaces=true,
basicstyle={\smaller\ttfamily},
extendedchars=true,
numbers=none,
numberstyle={\tiny\color{gray}},
commentstyle={\color{dkgreen}},
stringstyle={\color{mauve}},
frame=single,
framerule={0.0mm},
breaklines=true,
breakatwhitespace=true,
tabsize=3,
framexleftmargin={0.5mm},
framexrightmargin={0.5mm},
xleftmargin={1.5mm},
xrightmargin={1.5mm},
framextopmargin={0.5mm},
framexbottommargin={0.5mm},
fillcolor={\color{aqua}},
rulecolor={\color{aqua}},
rulesepcolor={\color{aqua}},
backgroundcolor={\color{aqua}},
mathescape=false,
extendedchars=true}
\begin{document}
\global\long\def\gunderline#1{\mathunderline{greenunder}{#1}}%
\global\long\def\bef{\forwardcompose}%
\global\long\def\bbnum#1{\custombb{#1}}%
\frame{\titlepage}
\begin{frame}{Overview: Advantages of functional programming}
Features of functional programming are being added to many languages
\begin{itemize}
\item What are these features?
\item What advantages do they give programmers?
\end{itemize}
Programmer-facing features listed in the increasing order of complexity
~ ~ (and decreasing order of advantage-to-cost ratio)
\begin{enumerate}
\item Write iterative code without loops
\item Use functions parameterized by types, checked by compiler
\item Use disjunctive types to model special cases, errors, etc.
\item Use special syntax for chaining effectful computations
\end{enumerate}
\end{frame}
\begin{frame}{Feature 1: Loop-free iterative programs. Transformation}
An easy interview question:
~ ~Given an array of integers, find all pairs that sum to a given
number
\begin{itemize}
\item Solutions using loops: \href{https://javarevisited.blogspot.com/2014/08/how-to-find-all-pairs-in-array-of-integers-whose-sum-equal-given-number-java.html}{10-20 lines of code}
\item FP solution with $O(n^{2})$ complexity:
\end{itemize}
\begin{lyxcode}
\textcolor{darkgray}{\footnotesize{}\#~Python}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}{[}~(x,~y)~for~x~in~array~for~y~in~array~if~x~+~y~==~n~{]}}{\footnotesize\par}
\textcolor{darkgray}{\footnotesize{}//~Scala}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}for~\{~x~<-~array;~y~<-~array;~if~x~+~y~==~n~\}~yield~(x,~y)}{\footnotesize\par}
\textcolor{darkgray}{\footnotesize{}-{}-~Haskell}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}do;~x~<-~array;~y~<-~array;~guard~(x~+~y~==~n);~return~(x,~y)}{\footnotesize\par}
\end{lyxcode}
\begin{itemize}
\item FP solution with $O(n\log n)$ complexity:
\end{itemize}
\begin{lyxcode}
\textcolor{darkgray}{\footnotesize{}//~Scala}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}val~hash~=~array.toSet}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}for~\{~x~<-~hash;~if~hash~contains~(n~-~x)~\}~yield~(x,~n~-~x)}{\footnotesize\par}
\end{lyxcode}
\end{frame}
\begin{frame}{Feature 1: Loop-free iterative programs. Aggregation}
\begin{itemize}
\item Given an array of integers, compute the sum of square roots of all
elements except negative ones
\end{itemize}
\begin{lyxcode}
\textcolor{darkgray}{\footnotesize{}\#~Python}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}sum(~{[}~sqrt(x)~for~x~in~givenArray~if~x~>=~0~{]}~)}{\footnotesize\par}
\textcolor{darkgray}{\footnotesize{}//~Scala}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}givenArray.filter(\_~>=~0).map(math.sqrt).sum}{\footnotesize\par}
\end{lyxcode}
\begin{itemize}
\item Given a set of integers, compute the sum of those integers which are
non-negative and whose square root is also present in the set
\begin{itemize}
\item Solution using loops: \href{https://www.geeksforgeeks.org/sum-of-elements-whose-square-root-is-present-in-the-array/}{15-20 lines of code}
\item FP solution:
\end{itemize}
\end{itemize}
\begin{lyxcode}
\textcolor{blue}{\footnotesize{}givenSet}\textcolor{darkgray}{\footnotesize{}~//~Scala}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~.filter~\{~x~=>~x~>=~0~\&\&~givenSet.contains(math.sqrt(x))~\}}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~.sum}{\footnotesize\par}
\end{lyxcode}
\begin{itemize}
\item Compute a positive integer from a given array of its decimal digits
\end{itemize}
\begin{lyxcode}
\textcolor{blue}{\footnotesize{}digits.reverse.zipWithIndex}\textcolor{darkgray}{\footnotesize{}~//~Scala}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~.map~\{~case~(d,~i)~=>~d~{*}~math.pow(10,~i).toInt~\}~.sum}{\footnotesize\par}
\end{lyxcode}
\end{frame}
\begin{frame}{Feature 1: Loop-free iterative programs. Induction}
\begin{itemize}
\item Compute the mean value of a given sequence in single pass
\end{itemize}
\begin{lyxcode}
\textcolor{blue}{\footnotesize{}scala>~Seq(4,~5,~6,~7).foldLeft((0.0,~0.0))~\{}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~~~~~~|~case~((sum,~count),~x)~=>~(sum~+~x,~count~+~1)}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~~~~~~|~\}.pipe~\{~case~(sum,~count)~=>~sum~/~count~\}~}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}res1:~Double~=~5.5}{\footnotesize\par}
\end{lyxcode}
\begin{itemize}
\item Any inductive definition can be converted to a ``fold''
\begin{itemize}
\item Base case is the initial value
\item Inductive step is the updater function
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Feature 1: Loop-free iterative programs. Other applications}
\begin{itemize}
\item The implementation of \texttt{\textcolor{blue}{\footnotesize{}map}},
\texttt{\textcolor{blue}{\footnotesize{}filter}}, \texttt{\textcolor{blue}{\footnotesize{}fold}},
\texttt{\textcolor{blue}{\footnotesize{}flatMap}}, \texttt{\textcolor{blue}{\footnotesize{}groupBy}},
\texttt{\textcolor{blue}{\footnotesize{}sum}}, etc., may be asynchronous
(Akka Streams), parallel, and/or distributed (Spark, Flink)
\begin{itemize}
\item The programmer writes loop-free code in the map/filter/reduce style
\item The runtime engine implements parallelism, fault tolerance, etc.
\item Many types of programmer errors are avoided automatically
\end{itemize}
\item What we need to support programming in the map/filter/reduce style:
\begin{itemize}
\item Collections with user-definable methods
\item Functions (``lambdas'') passed as parameters to other functions
\item Easy work with tuple types
\end{itemize}
\item Lambdas were added to most programming languages by 2015
\end{itemize}
\end{frame}
\begin{frame}{Feature 2: Type parameters. Usage}
\begin{itemize}
\item Collections can have types parameterized by element type
\begin{itemize}
\item Array of integers: \texttt{\textcolor{blue}{\footnotesize{}Array{[}Int{]}}}
\item Array of strings: \texttt{\textcolor{blue}{\footnotesize{}Array{[}String{]}}}
\item Array of arrays of pairs of integers and strings: \texttt{\textcolor{blue}{\footnotesize{}Array{[}Array{[}(Int,
String){]}{]}}}
\end{itemize}
\item Methods such as \texttt{\textcolor{blue}{\footnotesize{}map}}, \texttt{\textcolor{blue}{\footnotesize{}zip}},
\texttt{\textcolor{blue}{\footnotesize{}flatMap}}, \texttt{\textcolor{blue}{\footnotesize{}groupBy}}
change the type parameters
\end{itemize}
\begin{lyxcode}
\textcolor{blue}{\footnotesize{}Seq(4,~5,~6,~7)~~~~~~~~~~~~~~~~~~~~~}\textcolor{darkgray}{\footnotesize{}~//~Seq{[}Int{]}}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~.zip(Seq(\textquotedbl a\textquotedbl ,~\textquotedbl b\textquotedbl ,~\textquotedbl c\textquotedbl ,~\textquotedbl d\textquotedbl ))}\textcolor{darkgray}{\footnotesize{}~~~~~~//~Seq{[}(Int,~String){]}}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~.map~\{~case~(i,~s)~=>~s\textquotedbl\$s~:~\$i\textquotedbl ~\}}\textcolor{darkgray}{\footnotesize{}~//~Seq{[}String{]}}{\footnotesize\par}
\end{lyxcode}
\begin{itemize}
\item The compiler prevents using incorrect type parameters anywhere
\end{itemize}
\end{frame}
\begin{frame}{Feature 2: Type parameters. Language features}
\begin{itemize}
\item Code can be written once, then used with different type parameters
\item Example (Scala):
\end{itemize}
\begin{lyxcode}
\textcolor{blue}{\footnotesize{}def~map{[}A,~B{]}(xs:~Seq{[}A{]})(f:~A~=>~B):~Seq{[}B{]}~=~...~}{\footnotesize\par}
\end{lyxcode}
\begin{itemize}
\item Collections (\texttt{\textcolor{blue}{\footnotesize{}Array}}, \texttt{\textcolor{blue}{\footnotesize{}Set}},
etc.) with type parameters support such methods
\item Many programming languages have type parameters
\begin{itemize}
\item Functions with type parameters were added to Java in 2006
\item C++ can imitate this functionality with templates
\item Go-lang might get type parameters in the future
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Feature 3: Disjunctive types}
\begin{itemize}
\item Enumeration type (\texttt{\textcolor{blue}{\footnotesize{}enum}})
describes a set of disjoint possibilities:
\end{itemize}
\begin{lyxcode}
\textcolor{blue}{\footnotesize{}enum~Color~\{~RED,~GREEN,~BLUE;~\}~}\textcolor{darkgray}{\footnotesize{}//~Java}{\footnotesize\par}
\end{lyxcode}
\begin{itemize}
\item A value of type \texttt{\textcolor{blue}{\footnotesize{}Color}} can
be only one of the three possibilities
\item Disjunctive types are ``enriched'' \texttt{\textcolor{blue}{\footnotesize{}enum}}
types, carrying extra values:
\end{itemize}
\begin{lyxcode}
\textcolor{darkgray}{\footnotesize{}//~Scala~3}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}enum~RootOfEq~\{~case~NoRoots();~case~OneRoot(x:~Float);~\}}{\footnotesize\par}
\end{lyxcode}
\begin{itemize}
\item The \texttt{\textcolor{blue}{\footnotesize{}switch}} is ``enriched''
to extract data from disjunctive values
\end{itemize}
\begin{lyxcode}
\textcolor{darkgray}{\footnotesize{}//~Scala}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}roots~match~\{}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~case~OneRoot(x)~=>~}\textcolor{darkgray}{\footnotesize{}//~May~use~`x`~in~this~expression.}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~case~NoRoots()~=>~}\textcolor{darkgray}{\footnotesize{}//~May~not~use~`x`~here~by~mistake.}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}\}}{\footnotesize\par}
\end{lyxcode}
\begin{itemize}
\item Disjunctive types describe values from ``tagged union'' sets
\begin{itemize}
\item \texttt{\textcolor{blue}{\footnotesize{}OneRoot(x)}} $\cong$ the
set of all \texttt{\textcolor{blue}{\footnotesize{}Float}} values
\item \texttt{\textcolor{blue}{\footnotesize{}NoRoots()}} $\cong$ the set
consisting of a single value
\item \texttt{\textcolor{blue}{\footnotesize{}RootOfEq}} $\cong$ either
some \texttt{\textcolor{blue}{\footnotesize{}Float}} value or the
special value \texttt{\textcolor{blue}{\footnotesize{}NoRoots()}}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Feature 3: Disjunctive types. Adoption in languages}
\begin{itemize}
\item Disjunctive types and pattern matching are required for FP
\item Introduced in Standard ML (1973)
\item Supported in all FP languages (OCaml, Haskell, F\#, Scala, Swift,
...)
\item The support of disjunctive types only comes in FP-designed languages
\begin{itemize}
\item Not supported in C, C++, Java, JavaScript, Python, Go, ...
\item Not supported in relational languages (Prolog, SQL, Datalog, ...)
\item Not supported in configuration data formats (XML, JSON, YAML, ...)
\end{itemize}
\item Logical completeness of the type system:
\end{itemize}
\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{\small{}Scala type} & \textbf{\small{}Logic operation} & \textbf{\small{}Logic notation} & \textbf{\small{}Type notation}\tabularnewline
\hline
\hline
\texttt{\textcolor{blue}{\footnotesize{}(A, B)}} & conjunction & $A\wedge B$ & $A\times B$\tabularnewline
\hline
\texttt{\textcolor{blue}{\footnotesize{}Either{[}A, B{]}}} & disjunction & $A\vee B$ & $A+B$\tabularnewline
\hline
\texttt{\textcolor{blue}{\footnotesize{}A => B}} & implication & $A\Rightarrow B$ & $A\rightarrow B$\tabularnewline
\hline
\texttt{\textcolor{blue}{\footnotesize{}Unit}} & true & $\top$ & $\bbnum 1$\tabularnewline
\hline
\texttt{\textcolor{blue}{\footnotesize{}Nothing}} & false & $\bot$ & $\bbnum 0$\tabularnewline
\hline
\end{tabular}
\par\end{center}
\begin{itemize}
\item Programming is easier in languages having a \emph{complete} logic
of types
\begin{itemize}
\item ``Hindley-Milner type system''
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Feature 4: Chaining of effects. Motivation}
How to compose computations that may fail with an error?
\begin{itemize}
\item A ``result or error'' disjunctive type: \texttt{\textcolor{blue}{\footnotesize{}Try{[}A{]}}}
$\cong$ \texttt{\textcolor{blue}{\footnotesize{}Either{[}Throwable,
A{]}}}
\item In Scala, \texttt{\textcolor{blue}{\footnotesize{}Try{[}A{]}}} is
a disjunction of \texttt{\textcolor{blue}{\footnotesize{}Failure{[}Throwable{]}}}
and \texttt{\textcolor{blue}{\footnotesize{}Success{[}A{]}}}
\end{itemize}
Working with \texttt{\textcolor{blue}{\footnotesize{}Try{[}A{]}}}
requires two often-used code patterns:
\begin{itemize}
\item Use \texttt{\textcolor{blue}{\footnotesize{}Try{[}A{]}}} in a computation
that cannot fail, \texttt{\textcolor{blue}{\footnotesize{}f:~A =>
B}}
\begin{itemize}
\item \texttt{\textcolor{blue}{\footnotesize{}Success(a)}} goes to \texttt{\textcolor{blue}{\footnotesize{}Success(f(a))}}
but \texttt{\textcolor{blue}{\footnotesize{}Failure(t)}} remains unchanged
\end{itemize}
\item Use \texttt{\textcolor{blue}{\footnotesize{}Try{[}A{]}}} in a computation
that can fail, \texttt{\textcolor{blue}{\footnotesize{}g:~A => Try{[}B{]}}}
\begin{itemize}
\item \texttt{\textcolor{blue}{\footnotesize{}Success(a)}} goes to \texttt{\textcolor{blue}{\footnotesize{}g(a)}}
while \texttt{\textcolor{blue}{\footnotesize{}Failure(t)}} remains
unchanged
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Feature 4: Chaining of effects. Implementation}
Implementing the two code patterns using pattern matching:
\begin{itemize}
\item Pattern 1: use \texttt{\textcolor{blue}{\footnotesize{}Try{[}A{]}}}
in a computation that cannot fail
\end{itemize}
\begin{lyxcode}
\textcolor{blue}{\footnotesize{}tryGetFileStats()~match~\{}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~case~Success(stats)~=>~Success(stats.getTimestamp)}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~case~Failure(exception)~=>~Failure(exception)}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}\}}{\footnotesize\par}
\end{lyxcode}
\begin{itemize}
\item Pattern 2: use \texttt{\textcolor{blue}{\footnotesize{}Try{[}A{]}}}
in a computation that can fail
\end{itemize}
\begin{lyxcode}
\textcolor{blue}{\footnotesize{}tryOpenFile()~match~\{}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~case~Success(file)~=>~tryRead(file)}\textcolor{darkgray}{\footnotesize{}~//~Returns~Try{[}Array{[}Byte{]}{]}}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~case~Failure(exception)~=>~Failure(exception)}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}\}}{\footnotesize\par}
\end{lyxcode}
\end{frame}
\begin{frame}{Feature 4: Chaining of effects. Implementation}
\begin{itemize}
\item The two patterns may be combined at will
\end{itemize}
\begin{lyxcode}
\textcolor{darkgray}{\footnotesize{}//~Read~a~file,~decode~UTF-8,~return~the~number~of~chars.}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}def~utfChars(name:~String):~Try{[}Int{]}~=~tryOpenFile(name)~match~\{}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~case~Success(file)~=>~tryRead(file)~match~\{}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~~~~case~Success(bytes)~=>~tryDecodeUTF8(bytes)~match~\{}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~~~~~~case~Success(decoded)~=>~Success(decoded.length)}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~~~~~~case~Failure(exception)~=>~Failure(exception)}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~~~~\}}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~~~~case~Failure(exception)~=>~Failure(exception)}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~\}}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~case~Failure(exception)~=>~Failure(exception)}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}\}}{\footnotesize\par}
\end{lyxcode}
\begin{itemize}
\item The code is awkwardly nested and repetitive
\begin{itemize}
\item This sort of code is common in go-lang programs:
\end{itemize}
\begin{lyxcode}
\textcolor{blue}{\footnotesize{}err1,~res1~:=~tryOpenFile();}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}if~(res1~!=~nil)~\{}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~~err2,~res2~:=~tryRead(res1);}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~~if~(res2~!=~nil)~\{~...~\}~}\textcolor{darkgray}{\footnotesize{}~//~Continue~with~no~errors.}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~~else~...}\textcolor{darkgray}{\footnotesize{}~//~Handle~second~error.~}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}else~...}\textcolor{darkgray}{\footnotesize{}~~~~//~Handle~first~error.~}{\footnotesize\par}
\end{lyxcode}
\end{itemize}
\end{frame}
\begin{frame}{Feature 4: Chaining of effects. Using \texttt{map} and \texttt{flatMap}}
Implement the two code patterns using \texttt{\textcolor{blue}{\footnotesize{}map}}
and \texttt{\textcolor{blue}{\footnotesize{}flatMap}}:
\begin{itemize}
\item \texttt{\textcolor{blue}{\footnotesize{}Try(a).map(f)}} -- use with
\texttt{\textcolor{blue}{\footnotesize{}f:~A => B}} that cannot fail
\item \texttt{\textcolor{blue}{\footnotesize{}Try(a).flatMap(g)}} -- use
with \texttt{\textcolor{blue}{\footnotesize{}g:~A => Try{[}B{]}}}
that can fail
\end{itemize}
\begin{lyxcode}
\textcolor{blue}{\footnotesize{}def~fmap{[}A,~B{]}(f:~A~=>~B):~Try{[}A{]}~=>~Try{[}B{]}}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}def~flm{[}A,~B{]}(g:~A~=>~Try{[}B{]}):~Try{[}A{]}~=>~Try{[}B{]}}{\footnotesize\par}
\end{lyxcode}
\begin{itemize}
\item Pattern 1: use \texttt{\textcolor{blue}{\footnotesize{}Try{[}A{]}}}
in a computation that cannot fail
\end{itemize}
\begin{lyxcode}
\textcolor{blue}{\footnotesize{}tryGetFileStats()~match~\{}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~case~Success(stats)~=>~Success(stats.getTimestamp)}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~case~Failure(exception)~=>~Failure(exception)}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}\}}{\footnotesize\par}
\end{lyxcode}
\begin{itemize}
\item Pattern 2: use \texttt{\textcolor{blue}{\footnotesize{}Try{[}A{]}}}
in a computation that can fail
\end{itemize}
\begin{lyxcode}
\textcolor{blue}{\footnotesize{}tryOpenFile()~match~\{}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~case~Success(file)~=>~read(file)}\textcolor{darkgray}{\footnotesize{}~//~Returns~Try{[}InputStream{]}}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~case~Failure(exception)~=>~Failure(exception)}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}\}}{\footnotesize\par}
\end{lyxcode}
\end{frame}
\begin{frame}{Feature 4: Chaining of effects. Special syntax}
Using \texttt{\textcolor{blue}{\footnotesize{}map}} and \texttt{\textcolor{blue}{\footnotesize{}flatMap}},
the code from the previous slide simplifies:
\begin{lyxcode}
\textcolor{blue}{\footnotesize{}tryGetFileStats().map(stats~=>~stats.getTimestamp)}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}tryOpenFile().flatMap(file~=>~read(file))}{\footnotesize\par}
\end{lyxcode}
\begin{itemize}
\item We can now write code like this (avoiding nesting and repetition):
\end{itemize}
\begin{lyxcode}
\textcolor{blue}{\footnotesize{}Try(one()).map~\{~x~=>~f(x)~\}.flatMap~\{~y~=>~Try(another(y))~\}}{\footnotesize\par}
\end{lyxcode}
\begin{itemize}
\item Instead of a chain of \texttt{\textcolor{blue}{\footnotesize{}map}}
and \texttt{\textcolor{blue}{\footnotesize{}flatMap}} methods, use
a special syntax:
\end{itemize}
\begin{lyxcode}
\textcolor{blue}{\footnotesize{}for~\{}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~x~<-~Try(one())}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~y~=~f(x)}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~z~<-~Try(another(y))}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}\}~yield~z}{\footnotesize\par}
\end{lyxcode}
\begin{itemize}
\item Resembles the syntax for nested loops (``for-comprehension'')
\end{itemize}
\begin{lyxcode}
\textcolor{blue}{\footnotesize{}for~\{~x~<-~list1;~y~<-~list2~\}~yield~p(x,~y)~}\textcolor{darkgray}{\footnotesize{}//~Scala}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}{[}~p(x,~y)~for~y~in~list2~for~x~in~list1~{]}~}\textcolor{darkgray}{\footnotesize{}//~Python}{\footnotesize\par}
\end{lyxcode}
\begin{itemize}
\item In Haskell: ``\texttt{\textcolor{blue}{\footnotesize{}do}} notation'',
in F\#: ``computation expressions''
\end{itemize}
\end{frame}
\begin{frame}{Feature 4: Chaining of effects. Special syntax}
Using the special syntax, a chain of computations looks like this:
\begin{lyxcode}
\textcolor{darkgray}{\footnotesize{}//~Read~a~file,~decode~UTF-8,~return~the~number~of~chars.}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}def~utfChars(name:~String):~Try{[}Int{]}~=~for~\{}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~file~~~~<-~tryOpenFile(name)}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~bytes~~~<-~tryRead(file)}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~decoded~<-~tryDecodeUTF8(bytes)}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}~~length~~=~decoded.length}{\footnotesize\par}
\textcolor{blue}{\footnotesize{}\}~yield~length}{\footnotesize\par}
\end{lyxcode}
\end{frame}
\begin{frame}{Features 1-4 may be combined at will}
The main advantages in practical coding come from combining features
1-4 of functional programming
\begin{itemize}
\item Use functional methods on collections with type parameters
\item Use disjunctive types to represent program requirements
\item Avoid explicit loops and make sure all types match
\item Compose programs at high level by chaining effects (\texttt{\textcolor{blue}{\footnotesize{}Try}},
\texttt{\textcolor{blue}{\footnotesize{}Future}}, ...)
\end{itemize}
\end{frame}
\begin{frame}{Summary}
\begin{itemize}
\item FP proposes 4 essential features that make programming easier
\begin{itemize}
\item loop-free iteration, type parameters, disjunctive types, chaining
syntax
\item other, more advanced features have higher cost/advantage ratios
\end{itemize}
\item All ``FP languages'' have these features and give the same advantages
\begin{itemize}
\item OCaml, Haskell, Scala, F\#, Swift, Rust, Elm, ...
\end{itemize}
\item Most ``non-FP languages'' lack at least 2 of these features
\begin{itemize}
\item Lack of features may be compensated but raises the cost of their use
\end{itemize}
\end{itemize}
\end{frame}
\end{document}