-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_model.py
162 lines (129 loc) · 5.29 KB
/
evaluate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse
import torch.cuda
from prettytable import PrettyTable
from utils.utils import set_seed, \
get_table_stat, get_relation_args, read_prompts
import numpy as np
from models import build_model_wrapper
from utils.read_data import LamaDataset
import random
from tqdm import tqdm
from transformers import BertForMaskedLM
import os
def model_evaluation(args):
set_seed(0)
args = get_relation_args(args)
print(args)
if args.model_path is not None:
model_type = args.model_path.split("/")[-1]
fout = open("{}/{}".format(args.out_dir, model_type), "w")
else:
model_type = args.model_name
fout = open("{}/{}".format(args.out_dir, model_type), "w")
device_num = torch.cuda.device_count()
device = random.choice(range(device_num))
model_wrapper = build_model_wrapper(
model_name=args.model_name, model_path=args.model_path, args=args, device=args.cuda_device
)
lamadata = LamaDataset(relation_file=args.relation_file,
sample_dir=args.sample_dir,
sample_file_type=args.sample_file_type)
id2relation, id2samples = lamadata.get_samples()
table = PrettyTable(
field_names=["id", "relation", "p"]
)
for relation_id in id2relation:
relation = id2relation[relation_id]
relation_label = relation["label"]
relation_prompts = read_prompts(relation_id)
samples = id2samples[relation_id]
results, p = model_wrapper.eval_sample_with_multi_prompts(
[relation_prompts[0]], samples,
batch_size=args.batch_size,
ignore_stop_word=args.ignore_stop_words
)
table.add_row([relation_id, relation_label, p])
print(table)
table = get_table_stat(table)
print(table)
fout.write(table.get_string() + '\n')
def dynamic_evaluation(args):
set_seed(0)
args = get_relation_args(args)
print(args)
checkpoint_path = "checkpoint/seed_0"
fout = open("dynamic_results/checkpoint.csv", "w")
ww = os.walk(checkpoint_path)
checkpoint_paths = []
points = [i for i in range(0, 200000, 20000)] + \
[i for i in range(200000, 2000001, 100000)]
print(points)
for point in points:
cur_path = os.path.join(checkpoint_path, "step_{}".format(point))
print(cur_path)
checkpoint_paths.append(cur_path)
model_wrappers = []
for model_path in checkpoint_paths:
device_num = torch.cuda.device_count()
device = random.choice(range(device_num))
model_wrapper = build_model_wrapper(
model_name=args.model_name, model_path=model_path, args=args, device=device
)
model_wrappers.append(model_wrapper)
lamadata = LamaDataset(relation_file=args.relation_file,
sample_dir=args.sample_dir,
sample_file_type=args.sample_file_type)
id2relation, id2samples = lamadata.get_samples()
pp = ["p_{}".format(i) for i in range(1, len(checkpoint_paths) + 1)]
table = PrettyTable(
field_names=["id", "relation"] + pp
)
for relation_id in id2relation:
relation = id2relation[relation_id]
relation_label = relation["label"]
relation_prompts = read_prompts(relation_id)
samples = id2samples[relation_id]
new_row = [relation_id, relation_label]
for model_wrapper in model_wrappers:
results, p = model_wrapper.evaluate_samples(
relation, samples,
max_len=args.max_len,
batch_size=args.batch_size,
ignore_stop_word=args.ignore_stop_words
)
new_row.append(p)
table.add_row(new_row)
print(table)
table = get_table_stat(table)
print(table)
fout.write(table.get_csv_string())
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--relation-type", type=str, default="lama_filter")
parser.add_argument("--model-name", type=str, default="bert-base-cased")
parser.add_argument("--batch-size", type=int, default=8)
parser.add_argument("--cuda-device", type=int, default=0)
parser.add_argument("--max-len", type=int, default=256)
parser.add_argument("--topk", type=int, default=10)
parser.add_argument("--gpt-method", type=str, default="next_token")
parser.add_argument("--generate-len", type=int, default=1)
parser.add_argument("--sample-method", type=str, default="replace",
choices=["replace", "no_replace"])
parser.add_argument("--dupe", type=int, default=5)
parser.add_argument("--lr", type=str, default="5e-5")
parser.add_argument("--model-path", type=str, default=None)
parser.add_argument("--out-dir", type=str, default="output/sample_disparity")
parser.add_argument("--task", type=str,
default="dynamic_evaluation",
choices=[
"data_evaluation",
"dynamic_evaluation"
])
parser.add_argument("--ignore-stop-words", action="store_false")
args = parser.parse_args()
if args.task == "data_evaluation":
model_evaluation(args)
elif args.task == "dynamic_evaluation":
dynamic_evaluation(args)
if __name__ == '__main__':
main()