-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathunsilencer.py
42 lines (33 loc) · 1.39 KB
/
unsilencer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import os
from pydub import AudioSegment
import argparse
def detect_leading_silence(wav, silence_threshold = -50.0, chunk_size = 10):
trim_ms = 0
assert chunk_size > 0
while wav[trim_ms: trim_ms + chunk_size].dBFS < silence_threshold and trim_ms < len(wav):
trim_ms += chunk_size
return trim_ms
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--input_dir', default=os.path.expanduser('~/tacotron_data/unsilenced_icelandic/ismData/wavs'))
parser.add_argument('--output_dir', default='trimmed')
args = parser.parse_args()
input_dir = args.input_dir
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
for file in os.listdir(input_dir):
if file[-4:] != '.wav':
# not a wav file
continue
current_file_path = os.path.join(input_dir, file)
print(current_file_path)
output_file_path = os.path.join(output_dir, file)
file_stats = os.stat(current_file_path)
if file_stats.st_size is 0:
continue
wav = AudioSegment.from_file(current_file_path, format='wav')
start_trim = detect_leading_silence(wav)
end_trim = detect_leading_silence(wav.reverse())
duration = len(wav)
trimmed_sound = wav[start_trim:duration - end_trim]
trimmed_sound.export(output_file_path, format='wav')