forked from BaochangZhang/Guidewire-Tracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_detect_flow.py
210 lines (177 loc) · 9.47 KB
/
my_detect_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
import argparse
import time
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from models.experimental import attempt_load
from utils.datasets import LoadImages
from utils.general import check_img_size, check_requirements, non_max_suppression_detection, apply_classifier, \
scale_coords, xyxy2xywh, set_logging, increment_path, refind2,refind
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized
def detect(save_img=True):
source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
# Directories
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
if save_img:
save_dir.mkdir(parents=True, exist_ok=True) # make dir
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
if half:
model.half() # to FP16
# Second-stage classifier
# Set Dataloader
vid_path, vid_writer = None, None
dataset = LoadImages(source, img_size=imgsz, stride=stride)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
t0 = time.time()
"""
path: the path of image file or video
img: [c,w,h]
img0s: original image [w,h,c]
cap: only for video reading. if reading image, it will be None;
"""
Target = []
Target_candidate = []
frame = 0
for path, img, im0s, vid_cap in dataset:
# # get frame id
if dataset.mode == 'image':
frame = int(Path(path).name.split('.')[0].split('_')[-1]) + 1
elif dataset.mode == 'video':
frame = getattr(dataset, 'frame', 0)
if frame == 1:
img_t_1 = img
continue
if frame == 2:
img_t = img
im0s_t =im0s
path_t = path
continue
if frame > 2:
img_t_a1 = img
flow_img = img_t
flow_img[0] = img_t_1[0]
flow_img[2] = img_t_a1[2]
img_t_1 = img_t
img_t = img_t_a1
flow_img = torch.from_numpy(flow_img).to(device)
flow_img = flow_img.half() if half else flow_img.float() # uint8 to fp16/32
flow_img /= 255.0 # 0 - 255 to 0.0 - 1.0
if flow_img.ndimension() == 3:
flow_img = flow_img.unsqueeze(0)
# Inference
t1 = time_synchronized()
pred = model(flow_img, augment=opt.augment)[0]
# Apply NMS
pred_high, pred_candidates, _ = non_max_suppression_detection(prediction=pred, conf_factor=opt.conf_factor, iou_thres = opt.iou_thres, merge_thres=0.5, possible_targer_n=1, wh_range=[20, imgsz], merge=False, classes=opt.classes, agnostic=opt.agnostic_nms)
if frame == 0:
raise Exception(f'ERROR: {source} does not meet the required format!')
Target,Target_candidate = refind2(Target, Target_candidate, pred_high, pred_candidates, frame, conj_thres=0.2, frame_1st=3)
t2 = time_synchronized()
# Process detections
for i, (det, det_other) in enumerate(zip(Target, Target_candidate)): # detections per image
# p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p, s, im0 = path_t, '', im0s_t
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
s += '%gx%g ' % flow_img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(flow_img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det): # xyxy: bbox
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or view_img: # Add bbox to image
label = f'{names[int(cls)]} {conf:.2f}'
# plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1, margin=5)
plot_one_box(xyxy, im0, label=label, color=[255, 0, 0], line_thickness=1, margin=5)
if len(det_other):
# Rescale boxes from img_size to im0 size
det_other[:, :4] = scale_coords(flow_img.shape[2:], det_other[:, :4], im0.shape).round()
for *xyxy, conf, cls in reversed(det_other): # xyxy: bbox
if save_img or view_img: # Add bbox to image
label = f'{names[int(cls)]} {conf:.2f}'
# plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1, margin=5)
plot_one_box(xyxy, im0, label=label, color=[0, 0, 255], line_thickness=1, margin=5)
# Print time (inference + NMS)
print(f'{s}Done. ({t2 - t1:.3f}s)')
# Stream results
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path += '.mp4'
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer.write(im0)
im0s_t = im0s
path_t = path
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f"Results saved to {save_dir}{s}")
print(f'Done. ({time.time() - t0:.3f}s)')
#data/raw_Testimage_det1/*/*.png
#data/raw_Testimage_det1/sequence20_frame00050
#data/raw_Testvideo_det
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='runs/train/all_exp_yolov5s_det_flow/weights/best.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='data/raw_Testimage_det1/*/*.png', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=512, help='inference size (pixels)')
parser.add_argument('--conf-factor', type=float, default=0.4, help='object confidence factor')
parser.add_argument('--iou-thres', type=float, default=0.1, help='IOU threshold for NMS')
parser.add_argument('--device', default='1', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--project', default='runs/mydetect/all_exp_yolov5s_det_flow', help='save results to project/name')
parser.add_argument('--name', default='exp_Zhang', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
print(opt)
check_requirements(exclude=('pycocotools', 'thop'))
with torch.no_grad():
detect()