\mainpage Main Page
DAC 14 Click is a compact add-on board providing highly accurate digital-to-analog conversion. This board features the DAC53202, a 10-bit dual-channel programmable voltage/current-output DAC from Texas Instruments. The DAC53202 supports high-speed I2C and SPI serial interface alongside Hi-Z Power-Down mode and Hi-Z output during Power-OFF conditions. It has a programmable comparator mode for both DAC channels and one general-purpose I/O pin configurable as multiple functions allowing this smart DAC for processor-less applications.
- Author : Stefan Filipovic
- Date : Dec 2022.
- Type : I2C/SPI type
We provide a library for the DAC 14 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for DAC 14 Click driver.
dac14_cfg_setup
Config Object Initialization function.
void dac14_cfg_setup ( dac14_cfg_t *cfg );
dac14_init
Initialization function.
err_t dac14_init ( dac14_t *ctx, dac14_cfg_t *cfg );
dac14_default_cfg
Click Default Configuration function.
err_t dac14_default_cfg ( dac14_t *ctx );
dac14_set_dac_data
This function sets the raw DAC data for the selected DAC channel.
err_t dac14_set_dac_data ( dac14_t *ctx, uint8_t dac, uint16_t dac_data );
dac14_start_function_gen
This function starts the function generator for the selected DAC channel.
err_t dac14_start_function_gen ( dac14_t *ctx, uint8_t dac );
dac14_config_function_gen
This function configures the function generator for the selected DAC channel.
err_t dac14_config_function_gen ( dac14_t *ctx, uint8_t dac, uint8_t waveform, uint8_t code_step, uint8_t slew_rate );
This example demonstrates the use of DAC 14 click board by changing the voltage level on the OUT0 as well as the waveform signals from a function generator on the OUT1.
The demo application is composed of two sections :
Initializes the driver and performs the click default configuration.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
dac14_cfg_t dac14_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
dac14_cfg_setup( &dac14_cfg );
DAC14_MAP_MIKROBUS( dac14_cfg, MIKROBUS_1 );
err_t init_flag = dac14_init( &dac14, &dac14_cfg );
if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( DAC14_ERROR == dac14_default_cfg ( &dac14 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
Changes the voltage level on the OUT0 as well as the waveform signals from a function generator on the OUT1 every 3 seconds. The state of both outputs will be displayed on the USB UART.
void application_task ( void )
{
static uint16_t dac = 0;
static uint8_t waveform = DAC14_WAVEFORM_TRIANGULAR;
if ( DAC14_OK == dac14_set_dac_data ( &dac14, DAC14_SEL_DAC_0, dac ) )
{
log_printf( &logger, "\r\n OUT0: %u -> %.2f V\r\n",
dac, ( float ) dac * DAC14_VDD_3V3 / DAC14_DAC_DATA_MAX );
dac += 100;
if ( dac > DAC14_DAC_DATA_MAX )
{
dac = DAC14_DAC_DATA_MIN;
}
}
err_t error_flag = dac14_stop_function_gen ( &dac14, DAC14_SEL_DAC_1 );
error_flag |= dac14_config_function_gen ( &dac14, DAC14_SEL_DAC_1, waveform,
DAC14_CODE_STEP_32_LSB, DAC14_SLEW_RATE_4_US );
error_flag |= dac14_start_function_gen ( &dac14, DAC14_SEL_DAC_1 );
if ( DAC14_OK == error_flag )
{
log_printf( &logger, " OUT1: " );
switch ( waveform )
{
case DAC14_WAVEFORM_TRIANGULAR:
{
log_printf( &logger, "triangular wave at about 4kHz\r\n" );
waveform = DAC14_WAVEFORM_SAWTOOTH;
break;
}
case DAC14_WAVEFORM_SAWTOOTH:
{
log_printf( &logger, "sawtooth wave at about 7.8kHz\r\n" );
waveform = DAC14_WAVEFORM_INV_SAWTOOTH;
break;
}
case DAC14_WAVEFORM_INV_SAWTOOTH:
{
log_printf( &logger, "inverse sawtooth wave at about 7.8kHz\r\n" );
waveform = DAC14_WAVEFORM_SINE;
break;
}
case DAC14_WAVEFORM_SINE:
{
log_printf( &logger, "sine wave at about 10.7kHz\r\n" );
waveform = DAC14_WAVEFORM_DISABLE;
break;
}
case DAC14_WAVEFORM_DISABLE:
{
log_printf( &logger, "function generator disabled\r\n" );
waveform = DAC14_WAVEFORM_TRIANGULAR;
break;
}
default:
{
log_printf( &logger, "unknown state\r\n" );
break;
}
}
}
Delay_ms ( 3000 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.DAC14
Additional notes and informations
Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.