-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch_vectors.py
45 lines (33 loc) · 1.78 KB
/
search_vectors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import sqlite3
from openai.embeddings_utils import cosine_similarity
from openai.embeddings_utils import get_embedding
from openai import api_key
import pandas as pd
import argparse
defaultdbfile = 'vectors.db'
tabname = 'embeddings'
def main():
global api_key
parser = argparse.ArgumentParser()
parser.add_argument('--database', '-D', type=str, default=defaultdbfile, help='SQLite3 database filename for storing vectors')
parser.add_argument('--api-key', type=str, default=None, help='OpenAI API key (or use env var OPENAI_API_KEY)')
parser.add_argument('--num-results', '-n', type=int, default=3, help='Number of results to output')
parser.add_argument('input', nargs=argparse.REMAINDER, type=str, help='Search terms')
args = parser.parse_args()
if args.api_key is not None:
api_key = args.api_key
searchtxt = ' '.join(args.input)
con = sqlite3.connect(args.database)
query = "SELECT path, name AS fname, firstLine, lastLine, vectorid, elem AS emb FROM embeddings JOIN vectors ON embeddings.vectorid = vectors.id ORDER BY vectorid, ord"
df = pd.read_sql_query(query, con).groupby('vectorid').agg({'emb': list, 'path': 'first', 'fname': 'first', 'firstLine': 'first', 'lastLine': 'first'}).reset_index()
search_functions(df, searchtxt, n=args.num_results)
def search_functions(df, code_query, n=3, pprint=True):
embedding = get_embedding(code_query, engine='code-search-babbage-text-001')
df['similarities'] = df.emb.apply(lambda x: cosine_similarity(x, embedding))
res = df.sort_values('similarities', ascending=False).head(n)
if pprint:
for r in res.iterrows():
print(f'{str(round(r[1].similarities*100, 1))}%: {r[1].fname}: {r[1].path} line {r[1].firstLine}')
return res
if __name__=="__main__":
main()