-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_csv.py
42 lines (30 loc) · 1.17 KB
/
test_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import pandas as pd
from csv_analyzer import CSVAnalyzerGrouping
# self.analyzer = CSVAnalyzerGrouping(directory="__tests__/testdata")
# output_dir = ".tmp"
# # Group data by a specific column
# result = self.analyzer.grouped_data_by_column("category")
# self.analyzer.export_matched_data(output_dir, result, "grouped_by_category")
# self.analyzer.export_unmatched_data(output_dir, result)
# Initialize the analyzer
analyzer = CSVAnalyzerGrouping()
# Group data by a specific column
result = analyzer.load_from_directory("__tests__/testdata")
# # List all columns in each file
# columns = analyzer.list_all_matched_columns()
# print(columns)
# # Find missing columns
# unmatched = analyzer.list_all_unmatched_columns()
# print(unmatched)
# # Get all loaded filenames
# files = analyzer.list_all_filenames()
# print(files)
# # Get data from a specific column
# category_data = analyzer.get_column_data("category")
# print(category_data)
# # Search for a value across all columns
results = analyzer.search_column_value("track01-name-3")
print(results)
# Search for specific column values
results = analyzer.search_column_value(description="track01-d-4", name="track01-name-3")
# print(results)